✈️ 使用CarbonInterface API和GPT-4o计算商务旅行二氧化碳排放量
中级
这是一个Other, AI, IT Ops领域的自动化工作流,包含 12 个节点。主要使用 SplitOut, HttpRequest, GmailTrigger, GoogleSheets, SplitInBatches 等节点,结合人工智能技术实现智能自动化。 ✈️ 通过Carbon Interface API和GPT-4o计算商务旅行二氧化碳排放
前置要求
- •可能需要目标 API 的认证凭证
- •Google 账号和 Gmail API 凭证
- •Google Sheets API 凭证
- •OpenAI API Key
使用的节点 (12)
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "1H8R2Hvre2Z1LuTG",
"meta": {
"instanceId": "",
"templateCredsSetupCompleted": true
},
"name": "✈️ CO2 Emissions of Business Travels with CarbonInterface API and GPT-4o",
"tags": [],
"nodes": [
{
"id": "16cb6418-383a-409e-ac18-8ba78aba031b",
"name": "Gmail Trigger",
"type": "n8n-nodes-base.gmailTrigger",
"position": [
-320,
415
],
"parameters": {
"simple": false,
"filters": {},
"options": {
"downloadAttachments": false
},
"pollTimes": {
"item": [
{
"mode": "everyMinute"
}
]
}
},
"credentials": {
"gmailOAuth2": {
"id": "",
"name": ""
}
},
"notesInFlow": true,
"typeVersion": 1.2
},
{
"id": "5c7c052e-9a71-4867-9d05-492dac9a8b7c",
"name": "Structured Output Parser",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
140,
600
],
"parameters": {
"jsonSchemaExample": "{\n \"traveler_name\": \"Samir Saci\",\n \"trip_purpose\": \"Sustainability Client Workshop\",\n \"trip_id\": \"LG-TRIP-2025-0624\",\n \"flights\": [\n {\n \"type\": \"departure\",\n \"from\": \"Paris Charles de Gaulle (CDG)\",\n \"to\": \"Toronto Pearson International (YYZ)\",\n \"from_code\": \"CDG\",\n \"to_code\": \"YYZ\",\n \"date\": \"2025-06-24\",\n \"flight_number\": \"AF356\"\n },\n {\n \"type\": \"return\",\n \"from\": \"Toronto Pearson International (YYZ)\",\n \"to\": \"Paris Charles de Gaulle (CDG)\",\n \"from_code\": \"YYZ\",\n \"to_code\": \"CDG\",\n \"date\": \"2025-06-28\",\n \"flight_number\": \"AC880\"\n }\n ],\n \"hotel_booked\": false,\n \"ground_transport_booked\": false\n}\n"
},
"typeVersion": 1.2
},
{
"id": "c0eeae42-d3dd-400e-8d19-1068f4ab999d",
"name": "AI Agent Parser",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
-100,
415
],
"parameters": {
"text": "=Extract the structured trip details from the following email:\n\n{{ $json.text }}\n",
"options": {
"systemMessage": "=You are a travel assistant. When provided with the body of a business trip confirmation email, extract the following structured JSON object.\n\nReturn **only** a JSON object with the following fields:\n\n{\n \"traveler_name\": string,\n \"trip_purpose\": string,\n \"trip_id\": string,\n \"flights\": [\n {\n \"type\": \"departure\" or \"return\",\n \"from\": string,\n \"from_code\": string (e.g., \"CDG\"),\n \"to\": string,\n \"to_code\": string (e.g., \"YYZ\"),\n \"date\": string (ISO 8601, e.g., \"2025-06-24\"),\n \"flight_number\": string\n }\n ],\n \"hotel_booked\": boolean,\n \"ground_transport_booked\": boolean\n}\n\n- Extract the 3-letter airport codes (IATA format) from the airport names and populate `from_code` and `to_code`.\n- If hotel or ground transport is marked “Not booked,” return `false`, otherwise `true`.\n- Always include both departure and return flights as separate items in the \"flights\" array.\n- Return only the JSON object, no extra text.\n"
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.9
},
{
"id": "2a30a34e-76d2-4d89-a5f9-cf48f97f490e",
"name": "OpenAI Chat Model2",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
-100,
620
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "",
"name": ""
}
},
"typeVersion": 1.2
},
{
"id": "f0eb3490-4f5f-42ca-83fa-0a562a08d630",
"name": "Split Out",
"type": "n8n-nodes-base.splitOut",
"position": [
320,
420
],
"parameters": {
"options": {},
"fieldToSplitOut": "output.flights"
},
"typeVersion": 1
},
{
"id": "c7bb9d8b-a972-4d53-8217-8e77c29dda81",
"name": "Record Flights Information",
"type": "n8n-nodes-base.googleSheets",
"position": [
840,
360
],
"parameters": {
"columns": {
"value": {
"To": "={{ $json.to }}",
"From": "={{ $json.from }}",
"To Code": "={{ $json.to_code }}",
"Trip ID": "={{ $('AI Agent Parser').item.json.output.trip_id }}_{{ $json.type }}",
"From Code": "={{ $json.from_code }}",
"Flight Date": "={{ $json.date }}",
"Flight Type": "={{ $json.type }}",
"Hotel Booked": "={{ $('AI Agent Parser').item.json.output.hotel_booked }}",
"Trip Purpose": "={{ $('AI Agent Parser').item.json.output.trip_purpose }}",
"Flight Number": "={{ $json.flight_number }}",
"Traveler Name": "={{ $('AI Agent Parser').item.json.output.traveler_name }}",
"Ground Transport Booked": "={{ $('AI Agent Parser').item.json.output.ground_transport_booked }}"
},
"schema": [
{
"id": "Traveler Name",
"type": "string",
"display": true,
"required": false,
"displayName": "Traveler Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Trip Purpose",
"type": "string",
"display": true,
"required": false,
"displayName": "Trip Purpose",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Trip ID",
"type": "string",
"display": true,
"required": false,
"displayName": "Trip ID",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Hotel Booked",
"type": "string",
"display": true,
"required": false,
"displayName": "Hotel Booked",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Ground Transport Booked",
"type": "string",
"display": true,
"required": false,
"displayName": "Ground Transport Booked",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Flight Type",
"type": "string",
"display": true,
"required": false,
"displayName": "Flight Type",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "From",
"type": "string",
"display": true,
"required": false,
"displayName": "From",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "From Code",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "From Code",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "To",
"type": "string",
"display": true,
"required": false,
"displayName": "To",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "To Code",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "To Code",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Flight Date",
"type": "string",
"display": true,
"required": false,
"displayName": "Flight Date",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Flight Number",
"type": "string",
"display": true,
"required": false,
"displayName": "Flight Number",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "append",
"sheetName": {
"__rl": true,
"mode": "list",
"value": "gid=0",
"cachedResultUrl": "",
"cachedResultName": "Flight"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1Unyl-tEDYwtrILjNLOX7IbBP-TAYy8gcmqcZahPpiEI",
"cachedResultUrl": "",
"cachedResultName": "Carbon Emissions"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "",
"name": ""
}
},
"notesInFlow": true,
"typeVersion": 4.6
},
{
"id": "9a3da134-6af3-4130-9420-7efbd4d47d17",
"name": "Loop Over Flights",
"type": "n8n-nodes-base.splitInBatches",
"position": [
540,
420
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "8fa6af96-da24-449f-ab07-7c26eebf82e1",
"name": "Collect CO2 Emissions",
"type": "n8n-nodes-base.httpRequest",
"position": [
1040,
360
],
"parameters": {
"url": "https://www.carboninterface.com/api/v1/estimates",
"method": "POST",
"options": {},
"jsonBody": "={\n \"type\": \"flight\",\n \"passengers\": 1,\n \"legs\": [\n {\n \"departure_airport\": \"{{ $json['From Code'] }}\",\n \"destination_airport\": \"{{ $json['To Code'] }}\"\n }\n ]\n}\n",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"headerParameters": {
"parameters": [
{
"name": "Authorization",
"value": "Bearer YOUR_API_LEY"
},
{
"name": "Content-Type",
"value": "application/json"
}
]
}
},
"notesInFlow": true,
"typeVersion": 4.2
},
{
"id": "0a297fa4-3ea0-485d-901e-48f8e3d32840",
"name": "Load Results",
"type": "n8n-nodes-base.googleSheets",
"position": [
1300,
420
],
"parameters": {
"columns": {
"value": {
"Trip ID": "={{ $('Record Flights Information').item.json['Trip ID'] }}",
"CO2 (kg)": "={{ $json.data.attributes.carbon_kg }}",
"Distance (km)": "={{ $json.data.attributes.distance_value }}",
"Estimation Time": "={{ $json.data.attributes.estimated_at }}"
},
"schema": [
{
"id": "Traveler Name",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Traveler Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Trip Purpose",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Trip Purpose",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Trip ID",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Trip ID",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Hotel Booked",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Hotel Booked",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Ground Transport Booked",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Ground Transport Booked",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Flight Type",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Flight Type",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "From",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "From",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "From Code",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "From Code",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "To",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "To",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "To Code",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "To Code",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Flight Date",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Flight Date",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Flight Number",
"type": "string",
"display": true,
"removed": true,
"required": false,
"displayName": "Flight Number",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Distance (km)",
"type": "string",
"display": true,
"required": false,
"displayName": "Distance (km)",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "CO2 (kg)",
"type": "string",
"display": true,
"required": false,
"displayName": "CO2 (kg)",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Estimation Time",
"type": "string",
"display": true,
"required": false,
"displayName": "Estimation Time",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Trip ID"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": "gid=0",
"cachedResultUrl": "",
"cachedResultName": "Flight"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1Unyl-tEDYwtrILjNLOX7IbBP-TAYy8gcmqcZahPpiEI",
"cachedResultUrl": "",
"cachedResultName": "Carbon Emissions"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "",
"name": ""
}
},
"notesInFlow": true,
"typeVersion": 4.6
},
{
"id": "943097a7-84b2-4be1-a65a-711a8350daad",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-360,
-60
],
"parameters": {
"color": 7,
"width": 180,
"height": 820,
"content": "### 1. Workflow Trigger with Gmail Trigger\nThe workflow is triggered by a new email received in your Gmail mailbox dedicated to process **flight schedules**.\n\n#### How to setup?\n- **Gmail Trigger Node:** set up your Gmail API credentials\n[Learn more about the Gmail Trigger Node](https://docs.n8n.io/integrations/builtin/trigger-nodes/n8n-nodes-base.gmailtrigger)\n"
},
"typeVersion": 1
},
{
"id": "38d4649e-87c0-4bd6-b822-b88ff68309cc",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-160,
-60
],
"parameters": {
"color": 7,
"width": 440,
"height": 820,
"content": "### 2. AI Agent to trip schedule report\nThis node will analyze the content of the email to extract information about the trip including **departure** and **return** trips with **airport codes** and booking information. \n\n#### How to setup?\n- **AI Agent with the Chat Model**:\n 1. Add a **chat model** with the required credentials *(Example: Open AI 4o-mini)*\n 2. Adapt the system prompt to the format of emails you expect to receive *(type of information included)*\n [Learn more about the AI Agent Node](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent)\n"
},
"typeVersion": 1
},
{
"id": "01acc971-5482-4e00-846b-584660ec30ab",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
300,
-60
],
"parameters": {
"color": 7,
"width": 1180,
"height": 820,
"content": "### 3. Record Shipment Request Information and fetch distance and driving time using Open Route API\nThis starts by recording all the information parsed by the AI node. Then, we use the **Open Route API** to complete with **geocoding data** *(GPS Coordinates)* that will be used to fetch **driving distance and time**.\n\n#### How to setup?\n- **Setup Carbone Interface API Credentials**\n 1. Get your free API key: [Carbon Interface API Documentation](https://docs.carboninterface.com/#/)\n 2. Fill the API key in the HTTP request node\n- **Load records in the Google Sheet Node**:\n 1. Add your Google Sheet API credentials to access the Google Sheet file\n 2. Select the file using the list, an URL or an ID\n 3. Select the sheet in which you want to record your working sessions\n 4. Map the fields: **traveler_name**, **trip_purpose**, **trip_id**, **hotel_booked**, **ground_transport_booked**, **flight_type**, **from**, **from_code**, **to**, **to_code**, **flight_date**, **flight_number**, **distance_km**, **carbon_kg**, **estimated_at**\n\t\t\t\t\t\t\t\t\t\t\t\t\t\n [Learn more about the Google Sheet Node](https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-base.googlesheets)\n\nDistance, carbon emissions and estimation time will be fetched from the **Carbone Interface API**.\n"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "8a89f371-efb3-4bd0-8909-8fb802f7826d",
"connections": {
"f0eb3490-4f5f-42ca-83fa-0a562a08d630": {
"main": [
[
{
"node": "9a3da134-6af3-4130-9420-7efbd4d47d17",
"type": "main",
"index": 0
}
]
]
},
"0a297fa4-3ea0-485d-901e-48f8e3d32840": {
"main": [
[
{
"node": "9a3da134-6af3-4130-9420-7efbd4d47d17",
"type": "main",
"index": 0
}
]
]
},
"16cb6418-383a-409e-ac18-8ba78aba031b": {
"main": [
[
{
"node": "c0eeae42-d3dd-400e-8d19-1068f4ab999d",
"type": "main",
"index": 0
}
]
]
},
"c0eeae42-d3dd-400e-8d19-1068f4ab999d": {
"main": [
[
{
"node": "f0eb3490-4f5f-42ca-83fa-0a562a08d630",
"type": "main",
"index": 0
}
]
]
},
"9a3da134-6af3-4130-9420-7efbd4d47d17": {
"main": [
[],
[
{
"node": "c7bb9d8b-a972-4d53-8217-8e77c29dda81",
"type": "main",
"index": 0
}
]
]
},
"2a30a34e-76d2-4d89-a5f9-cf48f97f490e": {
"ai_languageModel": [
[
{
"node": "c0eeae42-d3dd-400e-8d19-1068f4ab999d",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"8fa6af96-da24-449f-ab07-7c26eebf82e1": {
"main": [
[
{
"node": "0a297fa4-3ea0-485d-901e-48f8e3d32840",
"type": "main",
"index": 0
}
]
]
},
"5c7c052e-9a71-4867-9d05-492dac9a8b7c": {
"ai_outputParser": [
[
{
"node": "c0eeae42-d3dd-400e-8d19-1068f4ab999d",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"c7bb9d8b-a972-4d53-8217-8e77c29dda81": {
"main": [
[
{
"node": "8fa6af96-da24-449f-ab07-7c26eebf82e1",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
中级 - 其他, 人工智能, IT 运维
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
🚚 使用 Carbon Interface API 和 GPT-4o 计算货运的 CO2
🚚 使用 Carbon Interface API 和 GPT-4o 计算货运的 CO2 排放量
Http Request
Gmail Trigger
Google Sheets
+
Http Request
Gmail Trigger
Google Sheets
10 节点Samir Saci
人工智能
🤖🚚 基于GPT-4o和Open Route API的运输订单管理AI代理
🤖🚚 基于GPT-4o和Open Route API的运输订单管理AI代理
Set
Wait
Gmail
+
Set
Wait
Gmail
26 节点Samir Saci
人工智能
🗞️ AI驱动的可持续性营销简报(使用Gmail、GPT-4o)
🗞️ AI驱动的可持续性营销简报(使用Gmail、GPT-4o)
If
Set
Code
+
If
Set
Code
21 节点Samir Saci
人工智能
🉑 使用Google Translate和GPT-4o生成语言学习Anki闪卡
🉑 使用Google Translate和GPT-4o生成语言学习Anki闪卡
If
Set
Merge
+
If
Set
Merge
21 节点Samir Saci
其他
在可视化参考库中探索n8n节点
在可视化参考库中探索n8n节点
If
Ftp
Set
+
If
Ftp
Set
113 节点I versus AI
其他
🌲 使用Gmail和GPT-40进行可持续发展报告审计的AI代理
🌲 使用Gmail和GPT-40进行可持续发展报告审计的AI代理
If
Code
Gmail
+
If
Code
Gmail
14 节点Samir Saci
其他
工作流信息
难度等级
中级
节点数量12
分类3
节点类型9
作者
Samir Saci
@samirsaciAutomation, AI and Analytics for Supply Chain & Business Optimization Helping businesses streamline operations using n8n, AI agents, and data science to enhance efficiency and sustainability. Linkedin: www.linkedin.com/in/samir-saci
外部链接
在 n8n.io 查看 →
分享此工作流