使用Supabase、Langchain Agent和OpenAI
高级
这是一个Content Creation, Multimodal AI领域的自动化工作流,包含 16 个节点。主要使用 If, Set, Supabase, Agent, ChatTrigger 等节点。 使用Supabase、Langchain Agent和OpenAI GPT-4o进行AI提示A/B测试
前置要求
- •Supabase URL 和 API Key
- •OpenAI API Key
- •PostgreSQL 数据库连接信息
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "TEA7K9MSVQGCWKe6",
"meta": {
"instanceId": "ac63467607103d9c95dd644384984672b90b1cb03e07edbaf18fe72b2a6c45bb",
"templateCredsSetupCompleted": true
},
"name": "A/B Split Testing",
"tags": [],
"nodes": [
{
"id": "e8404493-4297-4169-a72f-89e668ae5fbc",
"name": "When chat message received",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-1460,
-140
],
"webhookId": "334e3a8d-73d2-4d3c-9927-158c1169ef5e",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "582e1c1b-12ff-42ff-8130-48f94eebd706",
"name": "AI Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
220,
-160
],
"parameters": {
"text": "={{ $('When chat message received').item.json.chatInput }}",
"options": {
"systemMessage": "={{ $json.prompt }}"
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "39ca5c70-11d4-4f86-bde5-0f9827297be9",
"name": "Check If Session Exists",
"type": "n8n-nodes-base.supabase",
"position": [
-960,
-140
],
"parameters": {
"filters": {
"conditions": [
{
"keyName": "session_id",
"keyValue": "={{ $('When chat message received').item.json.sessionId }}"
}
]
},
"tableId": "split_test_sessions",
"operation": "get"
},
"credentials": {
"supabaseApi": {
"id": "1iEg1EzFrF29iqp2",
"name": "Supabase (bsde.ai)"
}
},
"executeOnce": false,
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "35f2c270-9571-41ba-ab7c-47a6742d7d90",
"name": "If Session Does Exist",
"type": "n8n-nodes-base.if",
"position": [
-720,
-140
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "4270c464-6874-45d2-aa3b-606f45544c3d",
"operator": {
"type": "number",
"operation": "exists",
"singleValue": true
},
"leftValue": "={{ $json.id }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "ec00ad92-96e9-4936-a547-2a2715ff5c32",
"name": "Assign Path To Session",
"type": "n8n-nodes-base.supabase",
"position": [
-400,
-20
],
"parameters": {
"tableId": "split_test_sessions",
"fieldsUi": {
"fieldValues": [
{
"fieldId": "show_alternative",
"fieldValue": "={{ Math.random() < 0.5 }}"
},
{
"fieldId": "session_id",
"fieldValue": "={{ $('When chat message received').item.json.sessionId }}"
}
]
}
},
"credentials": {
"supabaseApi": {
"id": "1iEg1EzFrF29iqp2",
"name": "Supabase (bsde.ai)"
}
},
"typeVersion": 1
},
{
"id": "92ee7145-30ae-41e9-bc04-eef03b84485e",
"name": "Define Path Values",
"type": "n8n-nodes-base.set",
"position": [
-1200,
-140
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "9581a184-a120-4b1f-8408-cfe97520d107",
"name": "baseline_value",
"type": "string",
"value": "The dog's name is Ben"
},
{
"id": "1752f2c4-4ce4-4893-b8db-1c59131c298a",
"name": "alternative_value",
"type": "string",
"value": "The dog's name is Tom"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "23c1b4e2-2ba2-4237-bb4b-b92da127d201",
"name": "OpenAI Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
300,
60
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "1OMpAMAKR9l3eUDI",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "be3f14b9-68c7-457d-b5bf-a6abbadf5b67",
"name": "Postgres Chat Memory",
"type": "@n8n/n8n-nodes-langchain.memoryPostgresChat",
"position": [
480,
60
],
"parameters": {
"tableName": "n8n_split_test_chat_histories",
"sessionKey": "={{ $('When chat message received').item.json.sessionId }}",
"sessionIdType": "customKey"
},
"credentials": {
"postgres": {
"id": "tzLXHvhykxvYghPC",
"name": "bsde.ai Supabase (Session Pooler)"
}
},
"typeVersion": 1.3
},
{
"id": "1c20d274-2482-4551-a4ea-64860eb35276",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1520,
-260
],
"parameters": {
"color": 7,
"width": 220,
"height": 300,
"content": "## 1. Receive Message\n\n"
},
"typeVersion": 1
},
{
"id": "ee22d3b1-d447-4e35-8ac4-d093edf6deee",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1280,
-340
],
"parameters": {
"color": 7,
"width": 1340,
"height": 500,
"content": "## 2. Determine Prompt for LLM\n"
},
"typeVersion": 1
},
{
"id": "7d90ec00-5fca-4b0d-bc1f-e8b8c179b960",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
80,
-240
],
"parameters": {
"color": 7,
"width": 520,
"height": 440,
"content": "## 3. AI Agent"
},
"typeVersion": 1
},
{
"id": "b9b9e0e8-53c1-4d6a-bbdc-c2a13d740dfb",
"name": "Get Correct Prompt",
"type": "n8n-nodes-base.set",
"position": [
-80,
-160
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "08de68ec-0f12-43ee-98ab-59d8a414f114",
"name": "prompt",
"type": "string",
"value": "={{ $json.show_alternative ? $('Define Path Values').item.json.alternative_value : $('Define Path Values').item.json.baseline_value }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "2b78ce9b-e6b4-4744-8ddf-00f8ae990fc8",
"name": "Sticky Note6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1260,
-240
],
"parameters": {
"color": 5,
"width": 220,
"height": 260,
"content": "### Modification\nSet the values of the baseline and alternative prompts"
},
"typeVersion": 1
},
{
"id": "0646f176-407a-41ee-b602-34bd681fc421",
"name": "Sticky Note8",
"type": "n8n-nodes-base.stickyNote",
"position": [
100,
40
],
"parameters": {
"color": 5,
"width": 340,
"height": 140,
"content": "### Modification\nReplace this sub-node \nto use a different language\n model"
},
"typeVersion": 1
},
{
"id": "a391018c-5d28-4384-89e1-0435758a6945",
"name": "Sticky Note5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1480,
-600
],
"parameters": {
"width": 520,
"height": 240,
"content": "### Setup\n1. Create a table in Supabase called **split_test_sessions**. It needs to have the following columns: **session_id** (`text`) and **show_alternative** (`bool`)\n2. Add your **Supabase**, **OpenAI**, and **PostgreSQL** credentials\n3. Modify the **Define Path Values** node to set the baseline and alternative prompt values.\n4. Activate the workflow and test by sending messages through n8n's inbuilt chat\n5. Experiment with different chat sessions to test see both prompts in action"
},
"typeVersion": 1
},
{
"id": "2382d146-f0c1-4de6-9e90-b17c304df692",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2120,
-360
],
"parameters": {
"width": 560,
"height": 480,
"content": "\n## Split Test Different Agent Prompts with Supabase and OpenAI\n### Use Case\nOftentimes, it's useful to test different settings for a large language model in production against various metrics. Split testing is a good method for doing this.\n### What it Does\nThis workflow randomly assigns chat sessions to one of two prompts, the baseline and the alternative. The agent will use the same prompt for all interactions in that chat session.\n### How it Works\n1. When messages arrive, a table containing information regarding session ID and which prompt to use is checked to see if the chat already exists\n2. If it does not, the session ID is added to the table and a prompt is randomly assigned\n3. These values are then used to generate a response\n### Next Steps\n- Modify the workflow to test different LLM settings such as temperature\n- Add a method to measure the efficacy of the two alternative prompts"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "339c6f2f-e4d1-4922-9442-2c1a78e96067",
"connections": {
"23c1b4e2-2ba2-4237-bb4b-b92da127d201": {
"ai_languageModel": [
[
{
"node": "582e1c1b-12ff-42ff-8130-48f94eebd706",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"92ee7145-30ae-41e9-bc04-eef03b84485e": {
"main": [
[
{
"node": "39ca5c70-11d4-4f86-bde5-0f9827297be9",
"type": "main",
"index": 0
}
]
]
},
"b9b9e0e8-53c1-4d6a-bbdc-c2a13d740dfb": {
"main": [
[
{
"node": "582e1c1b-12ff-42ff-8130-48f94eebd706",
"type": "main",
"index": 0
}
]
]
},
"be3f14b9-68c7-457d-b5bf-a6abbadf5b67": {
"ai_memory": [
[
{
"node": "582e1c1b-12ff-42ff-8130-48f94eebd706",
"type": "ai_memory",
"index": 0
}
]
]
},
"35f2c270-9571-41ba-ab7c-47a6742d7d90": {
"main": [
[
{
"node": "b9b9e0e8-53c1-4d6a-bbdc-c2a13d740dfb",
"type": "main",
"index": 0
}
],
[
{
"node": "ec00ad92-96e9-4936-a547-2a2715ff5c32",
"type": "main",
"index": 0
}
]
]
},
"ec00ad92-96e9-4936-a547-2a2715ff5c32": {
"main": [
[
{
"node": "b9b9e0e8-53c1-4d6a-bbdc-c2a13d740dfb",
"type": "main",
"index": 0
}
]
]
},
"39ca5c70-11d4-4f86-bde5-0f9827297be9": {
"main": [
[
{
"node": "35f2c270-9571-41ba-ab7c-47a6742d7d90",
"type": "main",
"index": 0
}
]
]
},
"e8404493-4297-4169-a72f-89e668ae5fbc": {
"main": [
[
{
"node": "92ee7145-30ae-41e9-bc04-eef03b84485e",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
高级 - 内容创作, 多模态 AI
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
✨🩷自动化社交媒体内容发布工厂 + 系统提示组合
基于动态系统提示和GPT-4o的AI驱动多平台社交媒体内容工厂
If
Set
Code
+
If
Set
Code
100 节点Amit Mehta
内容创作
使用 GPT-5 和 Google Docs 自动生成并润色专业简历
使用 GPT-5 和 Google Docs 自动生成并润色专业简历
If
Set
Google Docs
+
If
Set
Google Docs
17 节点Asfandyar Malik
内容创作
基于AI的会议效果自动分析与Slack反馈发送
基于AI的会议效果自动分析与Slack反馈发送
If
Set
Code
+
If
Set
Code
18 节点Junichiro Tobe
内容创作
使用 OpenAI、LangChain 和 API 集成的工作流自动化初学者指南
使用 OpenAI、LangChain 和 API 集成的工作流自动化初学者指南
If
Set
Code
+
If
Set
Code
33 节点Meelioo
内容创作
完整的 B2B 销售流程
完整的 B2B 销售流程:Apollo 潜在客户生成、Mailgun 外展和 AI 回复管理
If
Set
Code
+
If
Set
Code
116 节点Paul
内容创作
创建自更新的RAG聊天机器人(Google Drive、Gemini和Supabase)
使用Google Drive、Gemini和Supabase创建自更新的RAG聊天机器人
Set
Code
Merge
+
Set
Code
Merge
45 节点Anirudh Aeran
内容创作