使用GPT/Claude生成产品需求文档和测试场景,并导出PDF
这是一个Document Extraction, Multimodal AI领域的自动化工作流,包含 9 个节点。主要使用 Set, Form, FormTrigger, ApiTemplateIo, ChainLlm 等节点。 使用GPT/Claude生成产品需求文档和测试场景,并导出PDF
- •无特殊前置要求,导入即可使用
{
"id": "Dg9akaNziOBwgNu0",
"meta": {
"instanceId": "70273a2379644db63ce659827cfd8abac2d0b189210eafa02dd5376e3a62cd1d",
"templateCredsSetupCompleted": true
},
"name": "PRD_Testcase",
"tags": [],
"nodes": [
{
"id": "7aa1d0eb-a145-4713-b12c-72d757924ef1",
"name": "OpenRouter Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
"position": [
0,
64
],
"parameters": {
"model": "openai/gpt-4",
"options": {}
},
"credentials": {
"openRouterApi": {
"id": "brVP9oNL9perdfeq",
"name": "learnby-openrouther"
}
},
"typeVersion": 1
},
{
"id": "450b4fb9-26b5-4622-94ca-ca41761137b6",
"name": "OpenRouter Chat Model1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
"position": [
448,
48
],
"parameters": {
"model": "anthropic/claude-3.7-sonnet",
"options": {}
},
"credentials": {
"openRouterApi": {
"id": "brVP9oNL9perdfeq",
"name": "learnby-openrouther"
}
},
"typeVersion": 1
},
{
"id": "bc40e4ea-8bdd-4a60-88c9-aa4167640f08",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
-816,
-368
],
"parameters": {
"width": 480,
"height": 944,
"content": "### 📒 Generate **Product Requirements Document (PRD)** and **test scenarios** form input to PDF with OpenRouter and APITemplate.io\n\nThis workflow generates a **Product Requirements Document (PRD)** and **test scenarios** from structured form inputs. It uses **OpenRouter LLMs (GPT/Claude)** for natural language generation and **APITemplate.io** for PDF export. \n\n## Who’s it for\nThis template is designed for **product managers, business analysts, QA teams, and startup founders** who need to quickly create **Product Requirement Documents (PRDs)** and **test cases** from structured inputs. \n\n## How it works\n1. A **Form Trigger** collects key product details (name, overview, audience, goals, requirements). \n2. The **LLM Chain (OpenRouter GPT/Claude)** generates a professional, structured **PRD in Markdown format**. \n3. A second **LLM Chain** creates **test scenarios and Gherkin-style test cases** based on the PRD. \n4. Data is cleaned and merged using a **Set node**. \n5. The workflow sends the formatted document to **APITemplate.io** to generate a polished **PDF**. \n6. Finally, the workflow returns the PDF via a **Form Completion node** for easy download. \n \n\n## ⚡ Requirements\n- OpenRouter API Key (or any LLM)\n- APITemplate.io account \n\n## 🎯 Use cases\n- Rapid PRD drafting for startups. \n- QA teams generating **test scenarios** automatically. \n- Standardized documentation workflows. \n\n👉 Customize by editing prompts, PDF templates, or extending with integrations (Slack, Notion, Confluence). \n"
},
"typeVersion": 1
},
{
"id": "4c5c5daa-2ec9-451e-a827-b1d4cb21aecf",
"name": "PRD LLM Chain",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
0,
-192
],
"parameters": {
"text": "=Product Name - {{ $json['Product Name'] || 'Not Available'}}\nProduct Overview - {{ $json['Product Overview'] || 'Not Available' }}\nTarget Audience - {{ $json['Target Audience'] || 'Not Available' }}\nGoal & Objective - {{ $json['Goals & Objectives'] || 'Not Available' }}\nFunctional Requirements - {{ $json['Functional Requirements'] || 'Not Available' }}\nDate: {{ $json.submittedAt.split(\"T\")[0] }}\nCreated By - {{ $json['Created By'] || 'Not Available' }}",
"batching": {},
"messages": {
"messageValues": [
{
"message": "=You are an expert product manager and technical writer. \nYour task is to generate a clear, structured **Product Requirements Document (PRD)** in **Markdown format**. \nThe PRD should be professional, concise, and easy to share with engineers, designers, and stakeholders. \n\nUse Information provided by User prompt to Understand the requirement and try to go deep in filing all section.\n\n### Formatting Rules\n- Use proper Markdown headers (`#`, `##`, `###`) for sections. \n- Use bullet points or numbered lists where appropriate. \n- Keep language clear and action-oriented. \n- Do not include explanations of what a PRD is.\n\n### PRD Template\n# Product Requirements Document (PRD)\n\n## 1. Overview\n- **Project Name:** \n- **Document Owner:** (leave blank if not provided)\n- **Last Updated:** (user created date provided by user)\n\n## 2. Problem Statement\n\n## 3. Goals\n\n## 4. Non-Goals\n- (list if provided, else mark as “N/A”)\n\n## 5. Target Audience / Users\n - Pain Points Solved:\n\n## 6. Key Features / Requirements\n -Primary Users:\n -Secondary Users:\n - (expand if needed)\n\n## 7. Key Features\n(expand if missing)\n\n## 8. Functional Requirements\n(expand if missing)\n\n## 8. Technical Constraints\n(expand if missing)\n\n## 9. Success Metrics\n- (expand if missing)\n\n## 10. Risks & Assumptions\n\n---\n"
}
]
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "b6f3b365-d277-4917-bb39-6c44a3c9d29b",
"name": "Test Case LLM Chain",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
448,
-192
],
"parameters": {
"text": "={{ $json.text }}",
"batching": {},
"messages": {
"messageValues": [
{
"message": "Using the user input PRD document create Test scenario and test case in gherkin language. "
}
]
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "dba5e475-96b8-4505-96bb-ec736af91aa9",
"name": "Get User Input",
"type": "n8n-nodes-base.formTrigger",
"position": [
-288,
-192
],
"webhookId": "0a0d6c63-a806-4bb8-a9b6-f29c184a59b7",
"parameters": {
"options": {
"appendAttribution": false
},
"formTitle": "Technical Document Requirement",
"formFields": {
"values": [
{
"fieldLabel": "Product Name",
"placeholder": "Fitness Guru"
},
{
"fieldType": "textarea",
"fieldLabel": "Product Overview",
"placeholder": "An app that helps gym-goers track workouts, find classes, and stay motivated",
"requiredField": true
},
{
"fieldLabel": "Target Audience",
"placeholder": "gym members, personal trainers, gym owners"
},
{
"fieldLabel": "Goals & Objectives",
"placeholder": "Increase gym member engagement, streamline trainer-client interaction"
},
{
"fieldLabel": "Functional Requirements",
"placeholder": "Workout logging → select exercise → enter sets/reps → save → progress updates on dashboard."
}
]
},
"responseMode": "lastNode"
},
"typeVersion": 2.2
},
{
"id": "df78c5c0-2394-4fc4-b04b-da34bd07b7db",
"name": "Merge PRD and Test Case",
"type": "n8n-nodes-base.set",
"position": [
832,
-192
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "afee93c8-7b59-40b8-975a-55e4a3c9d35a",
"name": "text",
"type": "string",
"value": "={{ $('PRD LLM Chain').item.json.text }}\n{{ $json.text }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "2352e0ea-0f51-4b62-9dd1-b7af7a2a1628",
"name": "Create Document in PDF",
"type": "n8n-nodes-base.apiTemplateIo",
"position": [
1040,
-192
],
"parameters": {
"options": {
"fileName": "PRD_abc.pdf"
},
"download": true,
"resource": "pdf",
"propertiesUi": {
"propertyValues": [
{
"key": "markdown",
"value": "={{ $json.text }}"
}
]
},
"pdfTemplateId": "=e1277b23d41c334e"
},
"credentials": {
"apiTemplateIoApi": {
"id": "wve3UL6j52R45XJI",
"name": "learnbyalok_APITemplate.io account"
}
},
"typeVersion": 1
},
{
"id": "c1b7dcee-035e-46f3-8cfc-985cc7920839",
"name": "Let User Download",
"type": "n8n-nodes-base.form",
"position": [
1280,
-192
],
"webhookId": "a3e6b03b-d6a8-4390-9884-bfe08fb8cebd",
"parameters": {
"options": {},
"operation": "completion",
"respondWith": "returnBinary",
"completionTitle": "PRD Document is ready",
"completionMessage": "Process completed file will be downloaded! ",
"inputDataFieldName": "=data"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "a11c8289-d0f2-430d-995b-004ea59f10d9",
"connections": {
"4c5c5daa-2ec9-451e-a827-b1d4cb21aecf": {
"main": [
[
{
"node": "b6f3b365-d277-4917-bb39-6c44a3c9d29b",
"type": "main",
"index": 0
}
]
]
},
"dba5e475-96b8-4505-96bb-ec736af91aa9": {
"main": [
[
{
"node": "4c5c5daa-2ec9-451e-a827-b1d4cb21aecf",
"type": "main",
"index": 0
}
]
]
},
"c1b7dcee-035e-46f3-8cfc-985cc7920839": {
"main": [
[]
]
},
"b6f3b365-d277-4917-bb39-6c44a3c9d29b": {
"main": [
[
{
"node": "df78c5c0-2394-4fc4-b04b-da34bd07b7db",
"type": "main",
"index": 0
}
]
]
},
"7aa1d0eb-a145-4713-b12c-72d757924ef1": {
"ai_languageModel": [
[
{
"node": "4c5c5daa-2ec9-451e-a827-b1d4cb21aecf",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"2352e0ea-0f51-4b62-9dd1-b7af7a2a1628": {
"main": [
[
{
"node": "c1b7dcee-035e-46f3-8cfc-985cc7920839",
"type": "main",
"index": 0
}
]
]
},
"450b4fb9-26b5-4622-94ca-ca41761137b6": {
"ai_languageModel": [
[
{
"node": "b6f3b365-d277-4917-bb39-6c44a3c9d29b",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"df78c5c0-2394-4fc4-b04b-da34bd07b7db": {
"main": [
[
{
"node": "2352e0ea-0f51-4b62-9dd1-b7af7a2a1628",
"type": "main",
"index": 0
}
]
]
}
}
}如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
中级 - 文档提取, 多模态 AI
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
Alok Kumar
@alokkumarI am a Principal Software Engineer based in Ireland with a deep passion for AI and emerging technologies. With extensive experience in designing and implementing scalable software solutions, I focus on leveraging artificial intelligence to solve real-world problems. I enjoy exploring innovative applications of AI, from intelligent automation to data-driven insights, and I’m dedicated to building systems that are both efficient and impactful.
分享此工作流