LinkedIn帖子转个性化开场白
中级
这是一个Lead Nurturing, Multimodal AI领域的自动化工作流,包含 8 个节点。主要使用 Code, FormTrigger, OpenAi 等节点。 使用GPT-4o从LinkedIn帖子生成个性化冷邮件开场白
前置要求
- •OpenAI API Key
使用的节点 (8)
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "oJXYeAsW2fEXu2CM",
"meta": {
"instanceId": "12e5a503aaef0455553650326ab2eb200725340cc32343152db18828f7239580",
"templateCredsSetupCompleted": true
},
"name": "LinkedIn 帖子转个性化开场白",
"tags": [],
"nodes": [
{
"id": "4cc7a4e7-aeb1-4eae-a73e-a6106d8a126b",
"name": "尝试此示例",
"type": "n8n-nodes-base.stickyNote",
"position": [
580,
580
],
"parameters": {
"width": 480,
"height": 600,
"content": "**测试用此内容(复制粘贴):**"
},
"typeVersion": 1
},
{
"id": "8f299bd9-fbee-4933-8646-a9c654eb8ffd",
"name": "功能说明",
"type": "n8n-nodes-base.stickyNote",
"position": [
1420,
140
],
"parameters": {
"width": 400,
"height": 560,
"content": "**功能说明:**"
},
"typeVersion": 1
},
{
"id": "538a0c40-6292-460b-a12c-914ad5443e4b",
"name": "输出与后续步骤",
"type": "n8n-nodes-base.stickyNote",
"position": [
1420,
980
],
"parameters": {
"width": 400,
"height": 280,
"content": "**查找输出结果:**"
},
"typeVersion": 1
},
{
"id": "1f9660c3-8a4d-4b0a-b0cb-0fb9335f236f",
"name": "运作原理",
"type": "n8n-nodes-base.stickyNote",
"position": [
2060,
740
],
"parameters": {
"width": 400,
"height": 140,
"content": "**进一步连接您的工具:**"
},
"typeVersion": 1
},
{
"id": "4e7c2e84-5451-4946-9a37-cf98db194729",
"name": "格式化输出",
"type": "n8n-nodes-base.code",
"position": [
1840,
760
],
"parameters": {
"jsCode": "// Get AI response and original data\nconst aiResponse = $input.first().json;\nconst originalData = $('Process Input').first().json;\n\n// Extract the personalized opener\nconst opener = aiResponse.message?.content || aiResponse.text || \"Something went wrong. Try again.\";\n\n// Clean up the opener\nconst cleanOpener = opener\n .replace(/^\"|\"$/g, '')\n .replace(/^'|'$/g, '')\n .trim();\n\n// Create final response\nconst response = {\n success: true,\n opener: cleanOpener,\n prospect: originalData.first_name,\n company: originalData.company_name,\n next_steps: [\n \"1. Copy the opener above\",\n \"2. Add your value prop (2-3 sentences max)\",\n \"3. Include clear CTA\",\n \"4. Send it\"\n ],\n tips: [\n \"Keep total email under 100 words\",\n \"Send Tuesday-Thursday, 8-10am\",\n \"Follow up in 3-5 days if no response\",\n \"Personalize the subject line too\"\n ]\n};\n\nreturn { json: response };"
},
"typeVersion": 2
},
{
"id": "7470a3f6-f7cb-455c-b8c1-82a87d2a0e05",
"name": "AI魔法",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
1500,
760
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {
"maxTokens": 150,
"temperature": 0.8
},
"messages": {
"values": [
{
"content": "You are an elite B2B sales expert who crafts personalized cold email openers that get responses.\n\nYour specialty: Taking LinkedIn posts and creating openers that feel like they came from someone who actually READ and UNDERSTOOD the content.\n\nRules:\n- Reference specific details, metrics, or insights from the post\n- Sound like a human, not a bot\n- Show genuine interest in their work/achievement\n- Avoid generic praise (\"great post\", \"inspiring\", \"amazing\")\n- Be conversational but professional\n- Focus on what makes this post unique\n\nComplete this sentence: \"Came across your post on LinkedIn - \"\n\nMake it feel like you're genuinely interested in what they shared, not just trying to sell them something.\n\nExamples of what works:\n- \"Came across your post on LinkedIn - going from 5 to 50 employees in 18 months while maintaining 98% customer satisfaction is seriously impressive execution.\"\n- \"Came across your post on LinkedIn - the insight about AI replacing tasks, not jobs, really resonates with what we're seeing in manufacturing right now.\"\n- \"Came across your post on LinkedIn - bootstrapping to $2M ARR without external funding while building a distributed team is exactly the kind of scrappy growth I respect.\"\n\nOutput ONLY the completed sentence."
},
{
"content": "=LinkedIn Post:\n{{ $json.post_content }}\n\nAuthor: {{ $json.first_name }}\nCompany: {{ $json.company_name }}"
}
]
}
},
"credentials": {
"openAiApi": {
"id": "xru46lVnSA70vTec",
"name": "OpenAi account"
}
},
"typeVersion": 1.8
},
{
"id": "7948c914-c9c3-4675-993c-51cb0c7f8979",
"name": "LinkedIn帖子表单",
"type": "n8n-nodes-base.formTrigger",
"position": [
1140,
760
],
"webhookId": "6fbe076d-b99c-4dea-8575-ec53ad0a6e0a",
"parameters": {
"path": "6fbe076d-b99c-4dea-8575-ec53ad0a6e0a",
"options": {},
"formTitle": "LinkedIn Post Opener Generator",
"formFields": {
"values": [
{
"fieldLabel": "Author's First Name",
"requiredField": true
},
{
"fieldLabel": "Company Name",
"requiredField": true
},
{
"fieldType": "textarea",
"fieldLabel": "LinkedIn Post Content",
"requiredField": true
}
]
},
"formDescription": "Paste any LinkedIn post and get a personalized cold email opener that actually sounds human."
},
"typeVersion": 2.1
},
{
"id": "506fae22-1567-46be-8e74-263a5b4a1f84",
"name": "处理输入",
"type": "n8n-nodes-base.code",
"position": [
1320,
760
],
"parameters": {
"jsCode": "// Get form data\nconst firstName = $json['Author\\'s First Name']?.trim();\nconst companyName = $json['Company Name']?.trim();\nconst postContent = $json['LinkedIn Post Content']?.trim();\n\n// Validate input\nif (!firstName || !companyName || !postContent) {\n throw new Error('All fields are required');\n}\n\nif (postContent.length < 50) {\n throw new Error('Post too short. Need at least 50 characters for good personalization.');\n}\n\n// Clean the post content\nconst cleanedPost = postContent\n .replace(/\\s+/g, ' ')\n .replace(/[\\r\\n]+/g, ' ')\n .trim();\n\nreturn {\n json: {\n first_name: firstName,\n company_name: companyName,\n post_content: cleanedPost,\n timestamp: new Date().toISOString()\n }\n};"
},
"typeVersion": 2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "c2d342d7-3f02-41e5-95bd-cea679b53bee",
"connections": {
"7470a3f6-f7cb-455c-b8c1-82a87d2a0e05": {
"main": [
[
{
"node": "4e7c2e84-5451-4946-9a37-cf98db194729",
"type": "main",
"index": 0
}
]
]
},
"506fae22-1567-46be-8e74-263a5b4a1f84": {
"main": [
[
{
"node": "7470a3f6-f7cb-455c-b8c1-82a87d2a0e05",
"type": "main",
"index": 0
}
]
]
},
"7948c914-c9c3-4675-993c-51cb0c7f8979": {
"main": [
[
{
"node": "506fae22-1567-46be-8e74-263a5b4a1f84",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
中级 - 客户培育, 多模态 AI
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
自动化潜在客户生成与个性化外联:Apollo、AI和Instantly.ai
自动化潜在客户生成与个性化外联:Apollo、AI和Instantly.ai
If
Set
Code
+
If
Set
Code
166 节点Ruben AI
客户培育
自动化高级潜在客户触达与培育活动系统(含AI)
通过GPT-4、LinkedIn和Hunter.io自动化个性化B2B触达
If
Code
Wait
+
If
Code
Wait
30 节点Marth
客户培育
GPT-4驱动的冷邮件工作流,包含完全定制的3封邮件跟进
使用GPT-4、Mailgun和Supabase自动化个性化冷邮件序列
If
Set
Code
+
If
Set
Code
100 节点Paul
客户培育
基于Gemini AI和Telegram的智能餐厅点餐与推荐系统
使用Gemini和Telegram通过AI菜品推荐自动化餐厅点餐
Code
Telegram
Form Trigger
+
Code
Telegram
Form Trigger
21 节点Oneclick AI Squad
客户培育
自动化潜在客户捕获、AI资质鉴定及ElevenLabs个性化语音跟进
基于 OpenAI 和 ElevenLabs 的自动化线索捕获与 AI 个性化语音跟进
If
Set
Code
+
If
Set
Code
22 节点Marth
客户培育
使用Airtable、OpenAI和Unipile
使用Airtable、OpenAI和Unipile的自动化LinkedIn潜在客户生成与私信触达
If
Set
Code
+
If
Set
Code
143 节点Ruben AI
客户培育
工作流信息
难度等级
中级
节点数量8
分类2
节点类型4
作者
Dajeel Dulal
@dajeelAutomation Specialist | Verified by n8n & Make.com |$453,200 Revenue Generated | Marketing | CRM
外部链接
在 n8n.io 查看 →
分享此工作流