评估指标:摘要
高级
这是一个Engineering, AI领域的自动化工作流,包含 17 个节点。主要使用 Set, Webhook, Evaluation, GoogleDrive, ExtractFromFile 等节点,结合人工智能技术实现智能自动化。 评估指标:摘要
前置要求
- •HTTP Webhook 端点(n8n 会自动生成)
- •Google Drive API 凭证
- •OpenAI API Key
- •Google Gemini API Key
使用的节点 (17)
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"meta": {
"instanceId": "408f9fb9940c3cb18ffdef0e0150fe342d6e655c3a9fac21f0f644e8bedabcd9",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "68eca3c1-4f42-4358-8c3e-f9730a960af9",
"name": "是否正在评估?",
"type": "n8n-nodes-base.evaluation",
"position": [
860,
100
],
"parameters": {
"operation": "checkIfEvaluating"
},
"typeVersion": 4.6
},
{
"id": "dc7ea36c-c18c-4557-ba47-866c56460a39",
"name": "OpenAI 聊天模型",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
468,
290
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1-mini",
"cachedResultName": "gpt-4.1-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "8gccIjcuf3gvaoEr",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "fb639d23-2b51-4d5c-94a4-4356825bba52",
"name": "当获取数据集行时",
"type": "n8n-nodes-base.evaluationTrigger",
"position": [
-280,
170
],
"parameters": {
"sheetName": {
"__rl": true,
"mode": "list",
"value": 82338773,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y/edit#gid=82338773",
"cachedResultName": "Summarization"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y/edit?usp=drivesdk",
"cachedResultName": "96. Evaluations Test"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "XHvC7jIRR8A2TlUl",
"name": "Google Sheets account"
}
},
"typeVersion": 4.6
},
{
"id": "cf8646b6-425b-4e34-89c1-50e6fb76189d",
"name": "响应用户",
"type": "n8n-nodes-base.noOp",
"position": [
1100,
280
],
"parameters": {},
"typeVersion": 1
},
{
"id": "83cf1608-7c98-43fa-971c-ba38017cc37f",
"name": "LLM",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1140,
120
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash"
},
"credentials": {
"googlePalmApi": {
"id": "dSxo6ns5wn658r8N",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "5f688735-bbb7-4906-9c4b-f1069d095f05",
"name": "输出",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
1260,
120
],
"parameters": {
"jsonSchemaExample": "{\n \"rating\": 1,\n \"reason\": \"Tell me the reason for being lonely\"\n}"
},
"typeVersion": 1.2
},
{
"id": "8a65a118-7b26-446f-92e2-6884386c2bcf",
"name": "设置输出",
"type": "n8n-nodes-base.evaluation",
"position": [
1480,
60
],
"parameters": {
"outputs": {
"values": [
{
"outputName": "score",
"outputValue": "={{ $json.output.score }}"
},
{
"outputName": "score_reason",
"outputValue": "={{ $json.output.reason }}"
}
]
},
"sheetName": {
"__rl": true,
"mode": "list",
"value": 82338773,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y/edit#gid=82338773",
"cachedResultName": "Summarization"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1YOnu2JJjlxd787AuYcg-wKbkjyjyZFgASYVV0jsij5Y/edit?usp=drivesdk",
"cachedResultName": "96. Evaluations Test"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "XHvC7jIRR8A2TlUl",
"name": "Google Sheets account"
}
},
"typeVersion": 4.6
},
{
"id": "883908c4-e08f-4492-abe9-a4559ad5a217",
"name": "设置指标",
"type": "n8n-nodes-base.evaluation",
"position": [
1700,
60
],
"parameters": {
"metrics": {
"assignments": [
{
"id": "34913fdd-66e9-4581-b0bd-aa564d1a5c77",
"name": "score",
"type": "number",
"value": "={{ $json.output.rating }}"
}
]
},
"operation": "setMetrics"
},
"typeVersion": 4.6
},
{
"id": "f6e24007-39e5-47e4-88fc-a7bf3a994fa6",
"name": "下载转录稿",
"type": "n8n-nodes-base.googleDrive",
"position": [
-60,
70
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "url",
"value": "={{ $json.input }}"
},
"options": {},
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "yOwz41gMQclOadgu",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "767a7dc0-62e7-47b8-a9eb-84a399acdf1a",
"name": "摘要助手",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
380,
70
],
"parameters": {
"text": "={{ $json.data }}",
"batching": {},
"messages": {
"messageValues": [
{
"message": "Summarise the top 5 highlights of this video using the provided transcript."
}
]
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "c1390261-2e11-4d8c-a609-76541c3dcdf0",
"name": "从文件提取",
"type": "n8n-nodes-base.extractFromFile",
"position": [
160,
70
],
"parameters": {
"options": {},
"operation": "text"
},
"typeVersion": 1
},
{
"id": "a5387932-2f2f-40b7-9811-ab856417986f",
"name": "Webhook",
"type": "n8n-nodes-base.webhook",
"position": [
-500,
-30
],
"webhookId": "088cd101-9dbc-46f2-899a-d2d91c15c1e5",
"parameters": {
"path": "088cd101-9dbc-46f2-899a-d2d91c15c1e5",
"options": {}
},
"typeVersion": 2
},
{
"id": "4671049e-5ae2-455a-b7f4-b1e9119ddfef",
"name": "获取 Gdrive URL",
"type": "n8n-nodes-base.set",
"position": [
-280,
-30
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "504e6b0b-77b9-4ec9-b2f9-3dbbb6bce953",
"name": "input",
"type": "string",
"value": "={{ $json.body.gdrive_url }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "c4a8cdb7-b462-412e-92fe-82c278375e9c",
"name": "评估摘要质量",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
1100,
-40
],
"parameters": {
"text": "=# Inputs and AI-generated Response\n### Transcript\n{{ $('Extract from File').item.json.data }}\n\n## AI-generated Response\n{{ $('Summarise Agent').item.json.text }}\n",
"batching": {},
"messages": {
"messageValues": [
{
"message": "=# Instruction\nYou are an expert evaluator. Your task is to evaluate the quality of the responses generated by AI models.\nWe will provide you with the user input and an AI-generated responses.\nYou should first read the user input carefully for analyzing the task, and then evaluate the quality of the responses based on the Criteria provided in the Evaluation section below.\nYou will assign the response a rating following the Rating Rubric and Evaluation Steps. Give step-by-step explanations for your rating, and only choose ratings from the Rating Rubric.\n\n# Evaluation\n## Metric Definition\nYou will be assessing summarization quality, which measures the overall ability to summarize text. Pay special attention to length constraints, such as in X words or in Y sentences. The instruction for performing a summarization task and the context to be summarized are provided in the user prompt. The response should be shorter than the text in the context. The response should not contain information that is not present in the context.\n\n## Criteria\nInstruction following: The response demonstrates a clear understanding of the summarization task instructions, satisfying all of the instruction's requirements.\nGroundedness: The response contains information included only in the context. The response does not reference any outside information.\nConciseness: The response summarizes the relevant details in the original text without a significant loss in key information without being too verbose or terse.\nFluency: The response is well-organized and easy to read.\n\n## Rating Rubric\n5: (Very good). The summary follows instructions, is grounded, is concise, and fluent.\n4: (Good). The summary follows instructions, is grounded, concise, and fluent.\n3: (Ok). The summary mostly follows instructions, is grounded, but is not very concise and is not fluent.\n2: (Bad). The summary is grounded, but does not follow the instructions.\n1: (Very bad). The summary is not grounded.\n\n## Evaluation Steps\nSTEP 1: Assess the response in aspects of instruction following, groundedness, conciseness, and verbosity according to the criteria.\nSTEP 2: Score based on the rubric."
}
]
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.7
},
{
"id": "f994670b-3c65-434e-9bf1-35c83fd0267c",
"name": "便签1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-580,
-240
],
"parameters": {
"color": 7,
"width": 1280,
"height": 700,
"content": "## 1. 设置您的 AI 工作流以使用评估"
},
"typeVersion": 1
},
{
"id": "87506ff3-c677-4d61-963c-26ff5bcac1e6",
"name": "便签2",
"type": "n8n-nodes-base.stickyNote",
"position": [
720,
-240
],
"parameters": {
"color": 7,
"width": 1160,
"height": 700,
"content": "## 2. 摘要:AI 的摘要是否基于源材料?"
},
"typeVersion": 1
},
{
"id": "3b345083-74d2-4d4b-92a4-ab22febffb4b",
"name": "便签3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-980,
-380
],
"parameters": {
"width": 380,
"height": 840,
"content": "## 试试看!"
},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"83cf1608-7c98-43fa-971c-ba38017cc37f": {
"ai_languageModel": [
[
{
"node": "c4a8cdb7-b462-412e-92fe-82c278375e9c",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"5f688735-bbb7-4906-9c4b-f1069d095f05": {
"ai_outputParser": [
[
{
"node": "c4a8cdb7-b462-412e-92fe-82c278375e9c",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"a5387932-2f2f-40b7-9811-ab856417986f": {
"main": [
[
{
"node": "4671049e-5ae2-455a-b7f4-b1e9119ddfef",
"type": "main",
"index": 0
}
]
]
},
"8a65a118-7b26-446f-92e2-6884386c2bcf": {
"main": [
[
{
"node": "883908c4-e08f-4492-abe9-a4559ad5a217",
"type": "main",
"index": 0
}
]
]
},
"4671049e-5ae2-455a-b7f4-b1e9119ddfef": {
"main": [
[
{
"node": "f6e24007-39e5-47e4-88fc-a7bf3a994fa6",
"type": "main",
"index": 0
}
]
]
},
"68eca3c1-4f42-4358-8c3e-f9730a960af9": {
"main": [
[
{
"node": "c4a8cdb7-b462-412e-92fe-82c278375e9c",
"type": "main",
"index": 0
}
],
[
{
"node": "cf8646b6-425b-4e34-89c1-50e6fb76189d",
"type": "main",
"index": 0
}
]
]
},
"767a7dc0-62e7-47b8-a9eb-84a399acdf1a": {
"main": [
[
{
"node": "68eca3c1-4f42-4358-8c3e-f9730a960af9",
"type": "main",
"index": 0
}
]
]
},
"c1390261-2e11-4d8c-a609-76541c3dcdf0": {
"main": [
[
{
"node": "767a7dc0-62e7-47b8-a9eb-84a399acdf1a",
"type": "main",
"index": 0
}
]
]
},
"dc7ea36c-c18c-4557-ba47-866c56460a39": {
"ai_languageModel": [
[
{
"node": "767a7dc0-62e7-47b8-a9eb-84a399acdf1a",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"f6e24007-39e5-47e4-88fc-a7bf3a994fa6": {
"main": [
[
{
"node": "c1390261-2e11-4d8c-a609-76541c3dcdf0",
"type": "main",
"index": 0
}
]
]
},
"c4a8cdb7-b462-412e-92fe-82c278375e9c": {
"main": [
[
{
"node": "8a65a118-7b26-446f-92e2-6884386c2bcf",
"type": "main",
"index": 0
}
]
]
},
"fb639d23-2b51-4d5c-94a4-4356825bba52": {
"main": [
[
{
"node": "f6e24007-39e5-47e4-88fc-a7bf3a994fa6",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
高级 - 工程, 人工智能
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
使用OpenAI和RAGAS方法评估AI代理响应正确性
使用OpenAI和RAGAS方法评估AI代理响应正确性
Set
Code
Merge
+
Set
Code
Merge
27 节点Jimleuk
工程
使用OpenAI和余弦相似度评估AI代理响应相关性
使用OpenAI和余弦相似度评估AI代理响应相关性
Set
Code
Evaluation
+
Set
Code
Evaluation
20 节点Jimleuk
工程
使用OpenAI评估RAG响应准确性:文档基础性指标
使用OpenAI评估RAG响应准确性:文档基础性指标
Set
Evaluation
Http Request
+
Set
Evaluation
Http Request
25 节点Jimleuk
工程
评估指标:答案相似度
评估指标:答案相似度
Set
Code
Merge
+
Set
Code
Merge
21 节点Jimleuk
工程
基于动态提示与Airtable的AI数据提取
通过动态提示与Airtable实现AI数据提取
Set
Code
Filter
+
Set
Code
Filter
51 节点Jimleuk
人工智能
基于动态提示和Baserow的AI数据提取
基于动态提示和Baserow的AI数据提取
Set
Code
Filter
+
Set
Code
Filter
45 节点Jimleuk
人工智能
工作流信息
难度等级
高级
节点数量17
分类2
节点类型12
作者
Jimleuk
@jimleukFreelance consultant based in the UK specialising in AI-powered automations. I work with select clients tackling their most challenging projects. For business enquiries, send me an email at hello@jimle.uk LinkedIn: https://www.linkedin.com/in/jimleuk/ X/Twitter: https://x.com/jimle_uk
外部链接
在 n8n.io 查看 →
分享此工作流