自适应RAG策略:查询分类与检索(Gemini和Qdrant)
高级
这是一个Engineering, Building Blocks, AI领域的自动化工作流,包含 39 个节点。主要使用 Set, Switch, Summarize, Agent, RespondToWebhook 等节点,结合人工智能技术实现智能自动化。 自适应RAG策略:查询分类与检索(Gemini和Qdrant)
前置要求
- •HTTP Webhook 端点(n8n 会自动生成)
- •Qdrant 服务器连接信息
- •Google Gemini API Key
使用的节点 (39)
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "cpuFyJYHKmjHTncz",
"meta": {
"instanceId": "2cb7a61f866faf57392b91b31f47e08a2b3640258f0abd08dd71f087f3243a5a",
"templateCredsSetupCompleted": true
},
"name": "Adaptive RAG",
"tags": [],
"nodes": [
{
"id": "856bd809-8f41-41af-8f72-a3828229c2a5",
"name": "Query Classification",
"type": "@n8n/n8n-nodes-langchain.agent",
"notes": "Classify a query into one of four categories: Factual, Analytical, Opinion, or Contextual.\n \nReturns:\nstr: Query category",
"position": [
380,
-20
],
"parameters": {
"text": "=Classify this query: {{ $('Combined Fields').item.json.user_query }}",
"options": {
"systemMessage": "You are an expert at classifying questions. \n\nClassify the given query into exactly one of these categories:\n- Factual: Queries seeking specific, verifiable information.\n- Analytical: Queries requiring comprehensive analysis or explanation.\n- Opinion: Queries about subjective matters or seeking diverse viewpoints.\n- Contextual: Queries that depend on user-specific context.\n\nReturn ONLY the category name, without any explanation or additional text."
},
"promptType": "define"
},
"typeVersion": 1.8
},
{
"id": "cc2106fc-f1a8-45ef-b37b-ab981ac13466",
"name": "Switch",
"type": "n8n-nodes-base.switch",
"position": [
740,
-40
],
"parameters": {
"rules": {
"values": [
{
"outputKey": "Factual",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "87f3b50c-9f32-4260-ac76-19c05b28d0b4",
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.output.trim() }}",
"rightValue": "Factual"
}
]
},
"renameOutput": true
},
{
"outputKey": "Analytical",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "f8651b36-79fa-4be4-91fb-0e6d7deea18f",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.output.trim() }}",
"rightValue": "Analytical"
}
]
},
"renameOutput": true
},
{
"outputKey": "Opinion",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "5dde06bc-5fe1-4dca-b6e2-6857c5e96d49",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.output.trim() }}",
"rightValue": "Opinion"
}
]
},
"renameOutput": true
},
{
"outputKey": "Contextual",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "bf97926d-7a0b-4e2f-aac0-a820f73344d8",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.output.trim() }}",
"rightValue": "Contextual"
}
]
},
"renameOutput": true
}
]
},
"options": {
"fallbackOutput": 0
}
},
"typeVersion": 3.2
},
{
"id": "63889cad-1283-4dbf-ba16-2b6cf575f24a",
"name": "Factual Strategy - Focus on Precision",
"type": "@n8n/n8n-nodes-langchain.agent",
"notes": "Retrieval strategy for factual queries focusing on precision.",
"position": [
1140,
-780
],
"parameters": {
"text": "=Enhance this factual query: {{ $('Combined Fields').item.json.user_query }}",
"options": {
"systemMessage": "=You are an expert at enhancing search queries.\n\nYour task is to reformulate the given factual query to make it more precise and specific for information retrieval. Focus on key entities and their relationships.\n\nProvide ONLY the enhanced query without any explanation."
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "020d2201-9590-400d-b496-48c65801271c",
"name": "Analytical Strategy - Comprehensive Coverage",
"type": "@n8n/n8n-nodes-langchain.agent",
"notes": "Retrieval strategy for analytical queries focusing on comprehensive coverage.",
"position": [
1140,
-240
],
"parameters": {
"text": "=Generate sub-questions for this analytical query: {{ $('Combined Fields').item.json.user_query }}",
"options": {
"systemMessage": "=You are an expert at breaking down complex questions.\n\nGenerate sub-questions that explore different aspects of the main analytical query.\nThese sub-questions should cover the breadth of the topic and help retrieve comprehensive information.\n\nReturn a list of exactly 3 sub-questions, one per line."
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "c35d1b95-68c8-4237-932d-4744f620760d",
"name": "Opinion Strategy - Diverse Perspectives",
"type": "@n8n/n8n-nodes-langchain.agent",
"notes": "Retrieval strategy for opinion queries focusing on diverse perspectives.",
"position": [
1140,
300
],
"parameters": {
"text": "=Identify different perspectives on: {{ $('Combined Fields').item.json.user_query }}",
"options": {
"systemMessage": "=You are an expert at identifying different perspectives on a topic.\n\nFor the given query about opinions or viewpoints, identify different perspectives that people might have on this topic.\n\nReturn a list of exactly 3 different viewpoint angles, one per line."
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "363a3fc3-112f-40df-891e-0a5aa3669245",
"name": "Contextual Strategy - User Context Integration",
"type": "@n8n/n8n-nodes-langchain.agent",
"notes": "Retrieval strategy for contextual queries integrating user context.",
"position": [
1140,
840
],
"parameters": {
"text": "=Infer the implied context in this query: {{ $('Combined Fields').item.json.user_query }}",
"options": {
"systemMessage": "=You are an expert at understanding implied context in questions.\n\nFor the given query, infer what contextual information might be relevant or implied but not explicitly stated. Focus on what background would help answering this query.\n\nReturn a brief description of the implied context."
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "45887701-5ea5-48b4-9b2b-40a80238ab0c",
"name": "Chat",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-280,
120
],
"webhookId": "56f626b5-339e-48af-857f-1d4198fc8a4d",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "7f7df364-4829-4e29-be3d-d13a63f65b8f",
"name": "Factual Prompt and Output",
"type": "n8n-nodes-base.set",
"position": [
1540,
-780
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
"name": "output",
"type": "string",
"value": "={{ $json.output }}"
},
{
"id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
"name": "prompt",
"type": "string",
"value": "You are a helpful assistant providing factual information. Answer the question based on the provided context. Focus on accuracy and precision. If the context doesn't contain the information needed, acknowledge the limitations."
}
]
}
},
"typeVersion": 3.4
},
{
"id": "590d8667-69eb-4db2-b5be-714c602b319a",
"name": "Contextual Prompt and Output",
"type": "n8n-nodes-base.set",
"position": [
1540,
840
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
"name": "output",
"type": "string",
"value": "={{ $json.output }}"
},
{
"id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
"name": "prompt",
"type": "string",
"value": "You are a helpful assistant providing contextually relevant information. Answer the question considering both the query and its context. Make connections between the query context and the information in the provided documents. If the context doesn't fully address the specific situation, acknowledge the limitations."
}
]
}
},
"typeVersion": 3.4
},
{
"id": "fa3228ee-62d8-4c02-9dca-8a1ebc6afc74",
"name": "Opinion Prompt and Output",
"type": "n8n-nodes-base.set",
"position": [
1540,
300
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
"name": "output",
"type": "string",
"value": "={{ $json.output }}"
},
{
"id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
"name": "prompt",
"type": "string",
"value": "You are a helpful assistant discussing topics with multiple viewpoints. Based on the provided context, present different perspectives on the topic. Ensure fair representation of diverse opinions without showing bias. Acknowledge where the context presents limited viewpoints."
}
]
}
},
"typeVersion": 3.4
},
{
"id": "c769a76a-fb26-46a1-a00d-825b689d5f7a",
"name": "Analytical Prompt and Output",
"type": "n8n-nodes-base.set",
"position": [
1540,
-240
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "a4a28ac2-4a56-46f6-8b86-f5d1a34b2ced",
"name": "output",
"type": "string",
"value": "={{ $json.output }}"
},
{
"id": "7aa6ce13-afbf-4871-b81c-6e9c722a53dc",
"name": "prompt",
"type": "string",
"value": "You are a helpful assistant providing analytical insights. Based on the provided context, offer a comprehensive analysis of the topic. Cover different aspects and perspectives in your explanation. If the context has gaps, acknowledge them while providing the best analysis possible."
}
]
}
},
"typeVersion": 3.4
},
{
"id": "fcd29f6b-17e8-442c-93f9-b93fbad7cd10",
"name": "Gemini Classification",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
360,
180
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-lite"
},
"credentials": {
"googlePalmApi": {
"id": "2zwuT5znDglBrUCO",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "c0828ee3-f184-41f5-9a25-0f1059b03711",
"name": "Gemini Factual",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1120,
-560
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash"
},
"credentials": {
"googlePalmApi": {
"id": "2zwuT5znDglBrUCO",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "98f9981d-ea8e-45cb-b91d-3c8d1fe33e25",
"name": "Gemini Analytical",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1120,
-20
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash"
},
"credentials": {
"googlePalmApi": {
"id": "2zwuT5znDglBrUCO",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "c85f270d-3224-4e60-9acf-91f173dfe377",
"name": "Chat Buffer Memory Analytical",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
1280,
-20
],
"parameters": {
"sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
"sessionIdType": "customKey",
"contextWindowLength": 10
},
"typeVersion": 1.3
},
{
"id": "c39ba907-7388-4152-965a-e28e626bc9b2",
"name": "Chat Buffer Memory Factual",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
1280,
-560
],
"parameters": {
"sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
"sessionIdType": "customKey",
"contextWindowLength": 10
},
"typeVersion": 1.3
},
{
"id": "52dcd9f0-e6b3-4d33-bc6f-621ef880178e",
"name": "Gemini Opinion",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1120,
520
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash"
},
"credentials": {
"googlePalmApi": {
"id": "2zwuT5znDglBrUCO",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "147a709a-4b46-4835-82cf-7d6b633acd4c",
"name": "Chat Buffer Memory Opinion",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
1280,
520
],
"parameters": {
"sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
"sessionIdType": "customKey",
"contextWindowLength": 10
},
"typeVersion": 1.3
},
{
"id": "3cb6bf32-5937-49b9-acf7-d7d01dc2ddd1",
"name": "Gemini Contextual",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1120,
1060
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash"
},
"credentials": {
"googlePalmApi": {
"id": "2zwuT5znDglBrUCO",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "5916c4f1-4369-4d66-8553-2fff006b7e69",
"name": "Chat Buffer Memory Contextual",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
1280,
1060
],
"parameters": {
"sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
"sessionIdType": "customKey",
"contextWindowLength": 10
},
"typeVersion": 1.3
},
{
"id": "d33377c2-6b98-4e4d-968f-f3085354ae50",
"name": "Embeddings",
"type": "@n8n/n8n-nodes-langchain.embeddingsGoogleGemini",
"position": [
2060,
200
],
"parameters": {
"modelName": "models/text-embedding-004"
},
"credentials": {
"googlePalmApi": {
"id": "2zwuT5znDglBrUCO",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "32d9a0c0-0889-4cb2-a088-8ee9cfecacd3",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
1040,
-900
],
"parameters": {
"color": 7,
"width": 700,
"height": 520,
"content": "## Factual Strategy\n**Retrieve precise facts and figures.**"
},
"typeVersion": 1
},
{
"id": "064a4729-717c-40c8-824a-508406610a13",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1040,
-360
],
"parameters": {
"color": 7,
"width": 700,
"height": 520,
"content": "## Analytical Strategy\n**Provide comprehensive coverage of a topics and exploring different aspects.**"
},
"typeVersion": 1
},
{
"id": "9fd52a28-44bc-4dfd-bdb7-90987cc2f4fb",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
1040,
180
],
"parameters": {
"color": 7,
"width": 700,
"height": 520,
"content": "## Opinion Strategy\n**Gather diverse viewpoints on a subjective issue.**"
},
"typeVersion": 1
},
{
"id": "3797b21f-cc2a-4210-aa63-6d181d413c5e",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
1040,
720
],
"parameters": {
"color": 7,
"width": 700,
"height": 520,
"content": "## Contextual Strategy\n**Incorporate user-specific context to fine-tune the retrieval.**"
},
"typeVersion": 1
},
{
"id": "16fa1531-9fb9-4b12-961c-be12e20b2134",
"name": "Concatenate Context",
"type": "n8n-nodes-base.summarize",
"position": [
2440,
-20
],
"parameters": {
"options": {},
"fieldsToSummarize": {
"values": [
{
"field": "document.pageContent",
"separateBy": "other",
"aggregation": "concatenate",
"customSeparator": "={{ \"\\n\\n---\\n\\n\" }}"
}
]
}
},
"typeVersion": 1.1
},
{
"id": "4d6147d1-7a3d-42ab-b23f-cdafe8ea30b0",
"name": "Retrieve Documents from Vector Store",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
2080,
-20
],
"parameters": {
"mode": "load",
"topK": 10,
"prompt": "={{ $json.prompt }}\n\nUser query: \n{{ $json.output }}",
"options": {},
"qdrantCollection": {
"__rl": true,
"mode": "id",
"value": "={{ $('Combined Fields').item.json.vector_store_id }}"
}
},
"credentials": {
"qdrantApi": {
"id": "mb8rw8tmUeP6aPJm",
"name": "QdrantApi account"
}
},
"typeVersion": 1.1
},
{
"id": "7e68f9cb-0a0d-4215-8083-3b9ef92cd237",
"name": "Set Prompt and Output",
"type": "n8n-nodes-base.set",
"position": [
1880,
-20
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "1d782243-0571-4845-b8fe-4c6c4b55379e",
"name": "output",
"type": "string",
"value": "={{ $json.output }}"
},
{
"id": "547091fb-367c-44d4-ac39-24d073da70e0",
"name": "prompt",
"type": "string",
"value": "={{ $json.prompt }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "0c623ca1-da85-48a3-9d8b-90d97283a015",
"name": "Gemini Answer",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
2720,
200
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash"
},
"credentials": {
"googlePalmApi": {
"id": "2zwuT5znDglBrUCO",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "fab91e48-1c62-46a8-b9fc-39704f225274",
"name": "Answer",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
2760,
-20
],
"parameters": {
"text": "=User query: {{ $('Combined Fields').item.json.user_query }}",
"options": {
"systemMessage": "={{ $('Set Prompt and Output').item.json.prompt }}\n\nUse the following context (delimited by <ctx></ctx>) and the chat history to answer the user query.\n<ctx>\n{{ $json.concatenated_document_pageContent }}\n</ctx>"
},
"promptType": "define"
},
"typeVersion": 1.8
},
{
"id": "d69f8d62-3064-40a8-b490-22772fbc38cd",
"name": "Chat Buffer Memory",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
2900,
200
],
"parameters": {
"sessionKey": "={{ $('Combined Fields').item.json.chat_memory_key }}",
"sessionIdType": "customKey",
"contextWindowLength": 10
},
"typeVersion": 1.3
},
{
"id": "a399f8e6-fafd-4f73-a2de-894f1e3c4bec",
"name": "Sticky Note4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1800,
-220
],
"parameters": {
"color": 7,
"width": 820,
"height": 580,
"content": "## Perform adaptive retrieval\n**Find document considering both query and context.**"
},
"typeVersion": 1
},
{
"id": "7f10fe70-1af8-47ad-a9b5-2850412c43f8",
"name": "Sticky Note5",
"type": "n8n-nodes-base.stickyNote",
"position": [
2640,
-220
],
"parameters": {
"color": 7,
"width": 740,
"height": 580,
"content": "## Reply to the user integrating retrieval context"
},
"typeVersion": 1
},
{
"id": "5cd0dd02-65f4-4351-aeae-c70ecf5f1d66",
"name": "Respond to Webhook",
"type": "n8n-nodes-base.respondToWebhook",
"position": [
3120,
-20
],
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "4c56ef8f-8fce-4525-bb87-15df37e91cc4",
"name": "Sticky Note6",
"type": "n8n-nodes-base.stickyNote",
"position": [
280,
-220
],
"parameters": {
"color": 7,
"width": 700,
"height": 580,
"content": "## User query classification\n**Classify the query into one of four categories: Factual, Analytical, Opinion, or Contextual.**"
},
"typeVersion": 1
},
{
"id": "3ef73405-89de-4bed-9673-90e2c1f2e74b",
"name": "When Executed by Another Workflow",
"type": "n8n-nodes-base.executeWorkflowTrigger",
"position": [
-280,
-140
],
"parameters": {
"workflowInputs": {
"values": [
{
"name": "user_query"
},
{
"name": "chat_memory_key"
},
{
"name": "vector_store_id"
}
]
}
},
"typeVersion": 1.1
},
{
"id": "0785714f-c45c-4eda-9937-c97e44c9a449",
"name": "Combined Fields",
"type": "n8n-nodes-base.set",
"position": [
40,
-20
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "90ab73a2-fe01-451a-b9df-bffe950b1599",
"name": "user_query",
"type": "string",
"value": "={{ $json.user_query || $json.chatInput }}"
},
{
"id": "36686ff5-09fc-40a4-8335-a5dd1576e941",
"name": "chat_memory_key",
"type": "string",
"value": "={{ $json.chat_memory_key || $('Chat').item.json.sessionId }}"
},
{
"id": "4230c8f3-644c-4985-b710-a4099ccee77c",
"name": "vector_store_id",
"type": "string",
"value": "={{ $json.vector_store_id || \"<ID HERE>\" }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "57a93b72-4233-4ba2-b8c7-99d88f0ed572",
"name": "Sticky Note7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-300,
400
],
"parameters": {
"width": 1280,
"height": 1300,
"content": "# Adaptive RAG Workflow\n\nThis n8n workflow implements a version of the Adaptive Retrieval-Augmented Generation (RAG) approach. It classifies user queries and applies different retrieval and generation strategies based on the query type (Factual, Analytical, Opinion, or Contextual) to provide more relevant and tailored answers from a knowledge base stored in a Qdrant vector store.\n\n## How it Works\n\n1. **Input Trigger:**\n * The workflow can be initiated via the built-in Chat interface or triggered by another n8n workflow.\n * It expects inputs: `user_query`, `chat_memory_key` (for conversation history), and `vector_store_id` (specifying the Qdrant collection).\n * A `Set` node (`Combined Fields`) standardizes these inputs.\n\n2. **Query Classification:**\n * A Google Gemini agent (`Query Classification`) analyzes the `user_query`.\n * It classifies the query into one of four categories:\n * **Factual:** Seeking specific, verifiable information.\n * **Analytical:** Requiring comprehensive analysis or explanation.\n * **Opinion:** Asking about subjective matters or seeking diverse viewpoints.\n * **Contextual:** Depending on user-specific or implied context.\n\n3. **Adaptive Strategy Routing:**\n * A `Switch` node routes the workflow based on the classification result from the previous step.\n\n4. **Strategy Implementation (Query Adaptation):**\n * Depending on the route, a specific Google Gemini agent adapts the query or approach:\n * **Factual Strategy:** Rewrites the query for better precision, focusing on key entities (`Factual Strategy - Focus on Precision`).\n * **Analytical Strategy:** Breaks down the main query into multiple sub-questions to ensure comprehensive coverage (`Analytical Strategy - Comprehensive Coverage`).\n * **Opinion Strategy:** Identifies different potential perspectives or angles related to the query (`Opinion Strategy - Diverse Perspectives`).\n * **Contextual Strategy:** Infers implied context needed to answer the query effectively (`Contextual Strategy - User Context Integration`).\n * Each strategy path uses its own chat memory buffer for the adaptation step.\n\n5. **Retrieval Prompt & Output Setup:**\n * Based on the *original* query classification, a `Set` node (`Factual/Analytical/Opinion/Contextual Prompt and Output`, combined via connections to `Set Prompt and Output`) prepares:\n * The output from the strategy step (e.g., rewritten query, sub-questions, perspectives).\n * A tailored system prompt for the final answer generation agent, instructing it how to behave based on the query type (e.g., focus on precision for Factual, present diverse views for Opinion).\n\n6. **Document Retrieval (RAG):**\n * The `Retrieve Documents from Vector Store` node uses the adapted query/output from the strategy step to search the specified Qdrant collection (`vector_store_id`).\n * It retrieves the top relevant document chunks using Google Gemini embeddings.\n\n7. **Context Preparation:**\n * The content from the retrieved document chunks is concatenated (`Concatenate Context`) to form a single context block for the final answer generation.\n\n8. **Answer Generation:**\n * The final `Answer` agent (powered by Google Gemini) generates the response.\n * It uses:\n * The tailored system prompt set in step 5.\n * The concatenated context from retrieved documents (step 7).\n * The original `user_query`.\n * The shared chat history (`Chat Buffer Memory` using `chat_memory_key`).\n\n9. **Response:**\n * The generated answer is sent back to the user via the `Respond to Webhook` node."
},
"typeVersion": 1
},
{
"id": "bec8070f-2ce9-4930-b71e-685a2b21d3f2",
"name": "Sticky Note8",
"type": "n8n-nodes-base.stickyNote",
"position": [
-60,
-220
],
"parameters": {
"color": 7,
"width": 320,
"height": 580,
"content": "## ⚠️ If using in Chat mode\n\nUpdate the `vector_store_id` variable to the corresponding Qdrant ID needed to perform the documents retrieval."
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "7d56eea8-a262-4add-a4e8-45c2b0c7d1a9",
"connections": {
"45887701-5ea5-48b4-9b2b-40a80238ab0c": {
"main": [
[
{
"node": "0785714f-c45c-4eda-9937-c97e44c9a449",
"type": "main",
"index": 0
}
]
]
},
"fab91e48-1c62-46a8-b9fc-39704f225274": {
"main": [
[
{
"node": "5cd0dd02-65f4-4351-aeae-c70ecf5f1d66",
"type": "main",
"index": 0
}
]
]
},
"cc2106fc-f1a8-45ef-b37b-ab981ac13466": {
"main": [
[
{
"node": "63889cad-1283-4dbf-ba16-2b6cf575f24a",
"type": "main",
"index": 0
}
],
[
{
"node": "020d2201-9590-400d-b496-48c65801271c",
"type": "main",
"index": 0
}
],
[
{
"node": "c35d1b95-68c8-4237-932d-4744f620760d",
"type": "main",
"index": 0
}
],
[
{
"node": "363a3fc3-112f-40df-891e-0a5aa3669245",
"type": "main",
"index": 0
}
]
]
},
"d33377c2-6b98-4e4d-968f-f3085354ae50": {
"ai_embedding": [
[
{
"node": "4d6147d1-7a3d-42ab-b23f-cdafe8ea30b0",
"type": "ai_embedding",
"index": 0
}
]
]
},
"0c623ca1-da85-48a3-9d8b-90d97283a015": {
"ai_languageModel": [
[
{
"node": "fab91e48-1c62-46a8-b9fc-39704f225274",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"c0828ee3-f184-41f5-9a25-0f1059b03711": {
"ai_languageModel": [
[
{
"node": "63889cad-1283-4dbf-ba16-2b6cf575f24a",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"52dcd9f0-e6b3-4d33-bc6f-621ef880178e": {
"ai_languageModel": [
[
{
"node": "c35d1b95-68c8-4237-932d-4744f620760d",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"0785714f-c45c-4eda-9937-c97e44c9a449": {
"main": [
[
{
"node": "856bd809-8f41-41af-8f72-a3828229c2a5",
"type": "main",
"index": 0
}
]
]
},
"98f9981d-ea8e-45cb-b91d-3c8d1fe33e25": {
"ai_languageModel": [
[
{
"node": "020d2201-9590-400d-b496-48c65801271c",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"3cb6bf32-5937-49b9-acf7-d7d01dc2ddd1": {
"ai_languageModel": [
[
{
"node": "363a3fc3-112f-40df-891e-0a5aa3669245",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"d69f8d62-3064-40a8-b490-22772fbc38cd": {
"ai_memory": [
[
{
"node": "fab91e48-1c62-46a8-b9fc-39704f225274",
"type": "ai_memory",
"index": 0
}
]
]
},
"16fa1531-9fb9-4b12-961c-be12e20b2134": {
"main": [
[
{
"node": "fab91e48-1c62-46a8-b9fc-39704f225274",
"type": "main",
"index": 0
}
]
]
},
"856bd809-8f41-41af-8f72-a3828229c2a5": {
"main": [
[
{
"node": "cc2106fc-f1a8-45ef-b37b-ab981ac13466",
"type": "main",
"index": 0
}
]
]
},
"fcd29f6b-17e8-442c-93f9-b93fbad7cd10": {
"ai_languageModel": [
[
{
"node": "856bd809-8f41-41af-8f72-a3828229c2a5",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"7e68f9cb-0a0d-4215-8083-3b9ef92cd237": {
"main": [
[
{
"node": "4d6147d1-7a3d-42ab-b23f-cdafe8ea30b0",
"type": "main",
"index": 0
}
]
]
},
"7f7df364-4829-4e29-be3d-d13a63f65b8f": {
"main": [
[
{
"node": "7e68f9cb-0a0d-4215-8083-3b9ef92cd237",
"type": "main",
"index": 0
}
]
]
},
"fa3228ee-62d8-4c02-9dca-8a1ebc6afc74": {
"main": [
[
{
"node": "7e68f9cb-0a0d-4215-8083-3b9ef92cd237",
"type": "main",
"index": 0
}
]
]
},
"c39ba907-7388-4152-965a-e28e626bc9b2": {
"ai_memory": [
[
{
"node": "63889cad-1283-4dbf-ba16-2b6cf575f24a",
"type": "ai_memory",
"index": 0
}
]
]
},
"147a709a-4b46-4835-82cf-7d6b633acd4c": {
"ai_memory": [
[
{
"node": "c35d1b95-68c8-4237-932d-4744f620760d",
"type": "ai_memory",
"index": 0
}
]
]
},
"c769a76a-fb26-46a1-a00d-825b689d5f7a": {
"main": [
[
{
"node": "7e68f9cb-0a0d-4215-8083-3b9ef92cd237",
"type": "main",
"index": 0
}
]
]
},
"590d8667-69eb-4db2-b5be-714c602b319a": {
"main": [
[
{
"node": "7e68f9cb-0a0d-4215-8083-3b9ef92cd237",
"type": "main",
"index": 0
}
]
]
},
"c85f270d-3224-4e60-9acf-91f173dfe377": {
"ai_memory": [
[
{
"node": "020d2201-9590-400d-b496-48c65801271c",
"type": "ai_memory",
"index": 0
}
]
]
},
"5916c4f1-4369-4d66-8553-2fff006b7e69": {
"ai_memory": [
[
{
"node": "363a3fc3-112f-40df-891e-0a5aa3669245",
"type": "ai_memory",
"index": 0
}
]
]
},
"3ef73405-89de-4bed-9673-90e2c1f2e74b": {
"main": [
[
{
"node": "0785714f-c45c-4eda-9937-c97e44c9a449",
"type": "main",
"index": 0
}
]
]
},
"4d6147d1-7a3d-42ab-b23f-cdafe8ea30b0": {
"main": [
[
{
"node": "16fa1531-9fb9-4b12-961c-be12e20b2134",
"type": "main",
"index": 0
}
]
]
},
"63889cad-1283-4dbf-ba16-2b6cf575f24a": {
"main": [
[
{
"node": "7f7df364-4829-4e29-be3d-d13a63f65b8f",
"type": "main",
"index": 0
}
]
]
},
"c35d1b95-68c8-4237-932d-4744f620760d": {
"main": [
[
{
"node": "fa3228ee-62d8-4c02-9dca-8a1ebc6afc74",
"type": "main",
"index": 0
}
]
]
},
"020d2201-9590-400d-b496-48c65801271c": {
"main": [
[
{
"node": "c769a76a-fb26-46a1-a00d-825b689d5f7a",
"type": "main",
"index": 0
}
]
]
},
"363a3fc3-112f-40df-891e-0a5aa3669245": {
"main": [
[
{
"node": "590d8667-69eb-4db2-b5be-714c602b319a",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
高级 - 工程, 构建模块, 人工智能
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
RAG 2.0 - 答案架构
自适应RAG(Google Gemini和Qdrant):上下文感知查询应答
Set
Switch
Summarize
+
Set
Switch
Summarize
40 节点Nisa
构建模块
⚡AI驱动的YouTube播放列表和视频摘要与分析v2
AI YouTube播放列表与视频分析聊天机器人
If
Set
Code
+
If
Set
Code
72 节点dmr
其他
自适应与条件式 AI 聊天助手 - www.quantralabs.com
使用 Google Gemini 和 Qdrant 创建自适应 RAG 聊天代理
Set
Switch
Summarize
+
Set
Switch
Summarize
40 节点Brandon Crenshaw
人工智能
自动化多平台销售代理
使用 RAG、CRM 和支付处理的多平台销售代理
If
Set
Switch
+
If
Set
Switch
83 节点Electrabot
销售
使用SQL数据库、RAG和路由代理构建AI驱动的技术雷达顾问
使用SQL数据库、RAG和路由代理构建AI驱动的技术雷达顾问
If
Code
Cron
+
If
Code
Cron
53 节点Sean Lon
工程
AI智能助手与Airtable对话及数据分析
AI智能助手与Airtable对话及数据分析
If
Set
Merge
+
If
Set
Merge
41 节点Mark Shcherbakov
工程