[3/3] 异常检测工具(农作物数据集)
高级
这是一个AI, SecOps领域的自动化工作流,包含 17 个节点。主要使用 Set, Code, HttpRequest, ExecuteWorkflowTrigger 等节点,结合人工智能技术实现智能自动化。 异常(图像)检测工具 [3/3 - 异常]
前置要求
- •可能需要目标 API 的认证凭证
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
"id": "G8jRDBvwsMkkMiLN",
"meta": {
"instanceId": "205b3bc06c96f2dc835b4f00e1cbf9a937a74eeb3b47c99d0c30b0586dbf85aa"
},
"name": "[3/3] Anomaly detection tool (crops dataset)",
"tags": [
{
"id": "spMntyrlE9ydvWFA",
"name": "anomaly-detection",
"createdAt": "2024-12-08T22:05:15.945Z",
"updatedAt": "2024-12-09T12:50:19.287Z"
}
],
"nodes": [
{
"id": "e01bafec-eb24-44c7-b3c4-a60f91666350",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1200,
180
],
"parameters": {
"color": 6,
"width": 400,
"height": 740,
"content": "We are working here with crops dataset: \nExisting (so not anomalies) crops images in dataset are:\n- 'pearl_millet(bajra)',\n- 'tobacco-plant',\n- 'cherry',\n- 'cotton',\n- 'banana',\n- 'cucumber',\n- 'maize',\n- 'wheat',\n- 'clove',\n- 'jowar',\n- 'olive-tree',\n- 'soyabean',\n- 'coffee-plant',\n- 'rice',\n- 'lemon',\n- 'mustard-oil',\n- 'vigna-radiati(mung)',\n- 'coconut',\n- 'gram',\n- 'pineapple',\n- 'sugarcane',\n- 'sunflower',\n- 'chilli',\n- 'fox_nut(makhana)',\n- 'jute',\n- 'papaya',\n- 'tea',\n- 'cardamom',\n- 'almond'\n"
},
"typeVersion": 1
},
{
"id": "b9943781-de1f-4129-9b81-ed836e9ebb11",
"name": "Embed image",
"type": "n8n-nodes-base.httpRequest",
"position": [
680,
60
],
"parameters": {
"url": "https://api.voyageai.com/v1/multimodalembeddings",
"method": "POST",
"options": {},
"jsonBody": "={{\n{\n \"inputs\": [\n {\n \"content\": [\n {\n \"type\": \"image_url\",\n \"image_url\": $('Image URL hardcode').first().json.imageURL\n }\n ]\n }\n ],\n \"model\": \"voyage-multimodal-3\",\n \"input_type\": \"document\"\n}\n}}",
"sendBody": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth"
},
"credentials": {
"httpHeaderAuth": {
"id": "Vb0RNVDnIHmgnZOP",
"name": "Voyage API"
}
},
"typeVersion": 4.2
},
{
"id": "47b72bc2-4817-48c6-b517-c1328e402468",
"name": "Get similarity of medoids",
"type": "n8n-nodes-base.httpRequest",
"position": [
940,
60
],
"parameters": {
"url": "={{ $('Variables for medoids').first().json.qdrantCloudURL }}/collections/{{ $('Variables for medoids').first().json.collectionName }}/points/query",
"method": "POST",
"options": {},
"jsonBody": "={{\n{\n \"query\": $json.data[0].embedding,\n \"using\": \"voyage\",\n \"limit\": $('Info About Crop Labeled Clusters').first().json.cropsNumber,\n \"with_payload\": true,\n \"filter\": {\n \"must\": [\n { \n \"key\": $('Variables for medoids').first().json.clusterCenterType,\n \"match\": {\n \"value\": true\n }\n }\n ]\n }\n}\n}}",
"sendBody": true,
"specifyBody": "json",
"authentication": "predefinedCredentialType",
"nodeCredentialType": "qdrantApi"
},
"credentials": {
"qdrantApi": {
"id": "it3j3hP9FICqhgX6",
"name": "QdrantApi account"
}
},
"typeVersion": 4.2
},
{
"id": "42d7eb27-ec38-4406-b5c4-27eb45358e93",
"name": "Compare scores",
"type": "n8n-nodes-base.code",
"position": [
1140,
60
],
"parameters": {
"language": "python",
"pythonCode": "points = _input.first()['json']['result']['points']\nthreshold_type = _('Variables for medoids').first()['json']['clusterThresholdCenterType']\n\nmax_score = -1\ncrop_with_max_score = None\nundefined = True\n\nfor center in points:\n if center['score'] >= center['payload'][threshold_type]:\n undefined = False\n if center['score'] > max_score:\n max_score = center['score']\n crop_with_max_score = center['payload']['crop_name']\n\nif undefined:\n result_message = \"ALERT, we might have a new undefined crop!\"\nelse:\n result_message = f\"Looks similar to {crop_with_max_score}\"\n\nreturn [{\n \"json\": {\n \"result\": result_message\n }\n}]\n"
},
"typeVersion": 2
},
{
"id": "23aa604a-ff0b-4948-bcd5-af39300198c0",
"name": "Sticky Note4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1200,
-220
],
"parameters": {
"width": 400,
"height": 380,
"content": "## Crop Anomaly Detection Tool\n### This is the tool that can be used directly for anomalous crops detection. \nIt takes as input (any) **image URL** and returns a **text message** telling if whatever this image depicts is anomalous to the crop dataset stored in Qdrant. \n\n* An Image URL is received via the Execute Workflow Trigger which is used to generate embedding vectors via the Voyage.ai Embeddings API.\n* The returned vectors are used to query the Qdrant collection to determine if the given crop is known by comparing it to **threshold scores** of each image class (crop type).\n* If the image scores lower than all thresholds, then the image is considered an anomaly for the dataset."
},
"typeVersion": 1
},
{
"id": "3a79eca2-44f9-4aee-8a0d-9c7ca2f9149d",
"name": "Variables for medoids",
"type": "n8n-nodes-base.set",
"position": [
-200,
60
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "dbbc1e7b-c63e-4ff1-9524-8ef3e9f6cd48",
"name": "clusterCenterType",
"type": "string",
"value": "is_medoid"
},
{
"id": "a994ce37-2530-4030-acfb-ec777a7ddb05",
"name": "qdrantCloudURL",
"type": "string",
"value": "https://152bc6e2-832a-415c-a1aa-fb529f8baf8d.eu-central-1-0.aws.cloud.qdrant.io"
},
{
"id": "12f0a9e6-686d-416e-a61b-72d034ec21ba",
"name": "collectionName",
"type": "string",
"value": "=agricultural-crops"
},
{
"id": "4c88a617-d44f-4776-b457-8a1dffb1d03c",
"name": "clusterThresholdCenterType",
"type": "string",
"value": "is_medoid_cluster_threshold"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "13b25434-bd66-4293-93f1-26c67b9ec7dd",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-340,
260
],
"parameters": {
"color": 6,
"width": 360,
"height": 200,
"content": "**clusterCenterType** - either\n* \"is_text_anchor_medoid\" or\n* \"is_medoid\"\n\n\n**clusterThresholdCenterType** - either\n* \"is_text_anchor_medoid_cluster_threshold\" or\n* \"is_medoid_cluster_threshold\""
},
"typeVersion": 1
},
{
"id": "869b0962-6cae-487d-8230-539a0cc4c14c",
"name": "Info About Crop Labeled Clusters",
"type": "n8n-nodes-base.set",
"position": [
440,
60
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "5327b254-b703-4a34-a398-f82edb1d6d6b",
"name": "=cropsNumber",
"type": "number",
"value": "={{ $json.result.hits.length }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "5d3956f8-f43b-439e-b176-a594a21d8011",
"name": "Total Points in Collection",
"type": "n8n-nodes-base.httpRequest",
"position": [
40,
60
],
"parameters": {
"url": "={{ $json.qdrantCloudURL }}/collections/{{ $json.collectionName }}/points/count",
"method": "POST",
"options": {},
"jsonBody": "={\n \"exact\": true\n}",
"sendBody": true,
"specifyBody": "json",
"authentication": "predefinedCredentialType",
"nodeCredentialType": "qdrantApi"
},
"credentials": {
"qdrantApi": {
"id": "it3j3hP9FICqhgX6",
"name": "QdrantApi account"
}
},
"typeVersion": 4.2
},
{
"id": "14ba3db9-3965-4b20-b333-145616d45c3a",
"name": "Each Crop Counts",
"type": "n8n-nodes-base.httpRequest",
"position": [
240,
60
],
"parameters": {
"url": "={{ $('Variables for medoids').first().json.qdrantCloudURL }}/collections/{{ $('Variables for medoids').first().json.collectionName }}/facet",
"method": "POST",
"options": {},
"jsonBody": "={{\n{\n \"key\": \"crop_name\",\n \"limit\": $json.result.count,\n \"exact\": true\n}\n}}",
"sendBody": true,
"specifyBody": "json",
"authentication": "predefinedCredentialType",
"nodeCredentialType": "qdrantApi"
},
"credentials": {
"qdrantApi": {
"id": "it3j3hP9FICqhgX6",
"name": "QdrantApi account"
}
},
"typeVersion": 4.2
},
{
"id": "e37c6758-0556-4a56-ab14-d4df663cb53a",
"name": "Image URL hardcode",
"type": "n8n-nodes-base.set",
"position": [
-480,
60
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "46ceba40-fb25-450c-8550-d43d8b8aa94c",
"name": "imageURL",
"type": "string",
"value": "={{ $json.query.imageURL }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "b24ad1a7-0cf8-4acc-9c18-6fe9d58b10f2",
"name": "Execute Workflow Trigger",
"type": "n8n-nodes-base.executeWorkflowTrigger",
"position": [
-720,
60
],
"parameters": {},
"typeVersion": 1
},
{
"id": "50424f2b-6831-41bf-8de4-81f69d901ce1",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-240,
-80
],
"parameters": {
"width": 180,
"height": 120,
"content": "Variables to access Qdrant's collection we uploaded & prepared for anomaly detection in 2 previous pipelines\n"
},
"typeVersion": 1
},
{
"id": "2e8ed3ca-1bba-4214-b34b-376a237842ff",
"name": "Sticky Note5",
"type": "n8n-nodes-base.stickyNote",
"position": [
40,
-120
],
"parameters": {
"width": 560,
"height": 140,
"content": "These three nodes are needed just to figure out how many different classes (crops) we have in our Qdrant collection: **cropsNumber** (needed in *\"Get similarity of medoids\"* node. \n[Note] *\"Total Points in Collection\"* -> *\"Each Crop Counts\"* were used&explained already in *\"[2/4] Set up medoids (2 types) for anomaly detection (crops dataset)\"* pipeline.\n"
},
"typeVersion": 1
},
{
"id": "e2fa5763-6e97-4ff5-8919-1cb85a3c6968",
"name": "Sticky Note6",
"type": "n8n-nodes-base.stickyNote",
"position": [
620,
240
],
"parameters": {
"height": 120,
"content": "Here, we're embedding the image passed to this workflow tool with the Voyage embedding model to compare the image to all crop images in the database."
},
"typeVersion": 1
},
{
"id": "cdb6b8d3-f7f4-4d66-850f-ce16c8ed98b9",
"name": "Sticky Note7",
"type": "n8n-nodes-base.stickyNote",
"position": [
920,
220
],
"parameters": {
"width": 400,
"height": 180,
"content": "Checking how similar the image is to all the centres of clusters (crops).\nIf it's more similar to the thresholds we set up and stored in centres in the previous workflow, the image probably belongs to this crop class; otherwise, it's anomalous to the class. \nIf image is anomalous to all the classes, it's an anomaly."
},
"typeVersion": 1
},
{
"id": "03b4699f-ba43-4f5f-ad69-6f81deea2641",
"name": "Sticky Note22",
"type": "n8n-nodes-base.stickyNote",
"position": [
-620,
580
],
"parameters": {
"color": 4,
"width": 540,
"height": 300,
"content": "### For anomaly detection\n1. The first pipeline is uploading (crops) dataset to Qdrant's collection.\n2. The second pipeline sets up cluster (class) centres in this Qdrant collection & cluster (class) threshold scores.\n3. **This is the anomaly detection tool, which takes any image as input and uses all preparatory work done with Qdrant (crops) collection.**\n\n### To recreate it\nYou'll have to upload [crops](https://www.kaggle.com/datasets/mdwaquarazam/agricultural-crops-image-classification) dataset from Kaggle to your own Google Storage bucket, and re-create APIs/connections to [Qdrant Cloud](https://qdrant.tech/documentation/quickstart-cloud/) (you can use **Free Tier** cluster), Voyage AI API & Google Cloud Storage\n\n**In general, pipelines are adaptable to any dataset of images**\n"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {
"Execute Workflow Trigger": [
{
"json": {
"query": {
"imageURL": "https://storage.googleapis.com/n8n-qdrant-demo/agricultural-crops%2Fcotton%2Fimage%20(36).jpg"
}
}
}
]
},
"settings": {
"executionOrder": "v1"
},
"versionId": "f67b764b-9e1a-4db0-b9f2-490077a62f74",
"connections": {
"b9943781-de1f-4129-9b81-ed836e9ebb11": {
"main": [
[
{
"node": "47b72bc2-4817-48c6-b517-c1328e402468",
"type": "main",
"index": 0
}
]
]
},
"14ba3db9-3965-4b20-b333-145616d45c3a": {
"main": [
[
{
"node": "869b0962-6cae-487d-8230-539a0cc4c14c",
"type": "main",
"index": 0
}
]
]
},
"e37c6758-0556-4a56-ab14-d4df663cb53a": {
"main": [
[
{
"node": "3a79eca2-44f9-4aee-8a0d-9c7ca2f9149d",
"type": "main",
"index": 0
}
]
]
},
"3a79eca2-44f9-4aee-8a0d-9c7ca2f9149d": {
"main": [
[
{
"node": "5d3956f8-f43b-439e-b176-a594a21d8011",
"type": "main",
"index": 0
}
]
]
},
"b24ad1a7-0cf8-4acc-9c18-6fe9d58b10f2": {
"main": [
[
{
"node": "e37c6758-0556-4a56-ab14-d4df663cb53a",
"type": "main",
"index": 0
}
]
]
},
"47b72bc2-4817-48c6-b517-c1328e402468": {
"main": [
[
{
"node": "42d7eb27-ec38-4406-b5c4-27eb45358e93",
"type": "main",
"index": 0
}
]
]
},
"5d3956f8-f43b-439e-b176-a594a21d8011": {
"main": [
[
{
"node": "14ba3db9-3965-4b20-b333-145616d45c3a",
"type": "main",
"index": 0
}
]
]
},
"869b0962-6cae-487d-8230-539a0cc4c14c": {
"main": [
[
{
"node": "b9943781-de1f-4129-9b81-ed836e9ebb11",
"type": "main",
"index": 0
}
]
]
}
}
}常见问题
如何使用这个工作流?
复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。
这个工作流适合什么场景?
高级 - 人工智能, 安全运维
需要付费吗?
本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。
相关工作流推荐
[2/2] KNN分类器(土地数据集)
KNN(图像)分类工具 [2/2 KNN]
If
Set
Code
+
If
Set
Code
18 节点Jenny
人工智能
使用ChatGPT分析与分类可疑邮件内容
使用ChatGPT分析与分类可疑邮件内容
If
Set
Code
+
If
Set
Code
25 节点Angel Menendez
人工智能
使用ChatGPT Vision分析可疑邮件内容
使用ChatGPT Vision分析可疑邮件内容
Set
Code
Jira
+
Set
Code
Jira
18 节点Angel Menendez
人工智能
AI智能体:数秒内精准匹配LinkedIn人脉
AI智能体:数秒内精准匹配LinkedIn人脉
Set
Code
Split Out
+
Set
Code
Split Out
15 节点Badr
人工智能
自动化新闻到简报AI代理v13
AI新闻研究团队:24/7简报自动化,含Perplexity引用
Set
Code
Gmail
+
Set
Code
Gmail
37 节点Derek Cheung
产品
AI研究代理:使用Mistral最佳OCR自动分析PDF
AI研究代理:使用Mistral最佳OCR自动分析PDF
Set
Code
Gmail
+
Set
Code
Gmail
30 节点Derek Cheung
人工智能