8
n8n 中文网amn8n.com

使用Qdrant、Mistral.ai和OpenAI构建税法助手

高级

这是一个Finance, AI领域的自动化工作流,包含 38 个节点。主要使用 Set, Wait, Filter, Switch, SplitOut 等节点,结合人工智能技术实现智能自动化。 使用Qdrant、Mistral.ai和OpenAI构建税法助手

前置要求
  • 可能需要目标 API 的认证凭证
  • OpenAI API Key
  • Qdrant 服务器连接信息
工作流预览
可视化展示节点连接关系,支持缩放和平移
导出工作流
复制以下 JSON 配置到 n8n 导入,即可使用此工作流
{
  "meta": {
    "instanceId": "26ba763460b97c249b82942b23b6384876dfeb9327513332e743c5f6219c2b8e"
  },
  "nodes": [
    {
      "id": "1bb3c94e-326e-41ca-82e4-102a598dba39",
      "name": "When clicking ‘Test workflow’",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -320,
        300
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "751b283b-ea88-4fcd-ace3-3c86631f8876",
      "name": "Embeddings Mistral Cloud",
      "type": "@n8n/n8n-nodes-langchain.embeddingsMistralCloud",
      "position": [
        1760,
        560
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "mistralCloudApi": {
          "id": "EIl2QxhXAS9Hkg37",
          "name": "Mistral Cloud account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "f0851949-1036-4040-84df-61295cc5db74",
      "name": "Default Data Loader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        1900,
        560
      ],
      "parameters": {
        "options": {
          "metadata": {
            "metadataValues": [
              {
                "name": "chapter",
                "value": "={{ $('For Each Section...').item.json.chapter }}"
              },
              {
                "name": "section",
                "value": "={{ $('For Each Section...').item.json.label }}"
              },
              {
                "name": "=title",
                "value": "={{ $('For Each Section...').item.json.title }}"
              },
              {
                "name": "content_order",
                "value": "={{ $itemIndex }}"
              }
            ]
          }
        },
        "jsonData": "={{ $json.content }}",
        "jsonMode": "expressionData"
      },
      "typeVersion": 1
    },
    {
      "id": "41d10b61-9fbe-446e-a65a-0db6e0116e5b",
      "name": "Recursive Character Text Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        1920,
        680
      ],
      "parameters": {
        "options": {},
        "chunkSize": 2000
      },
      "typeVersion": 1
    },
    {
      "id": "a1ecb096-4d31-4993-b801-ca3f09a9edc7",
      "name": "Get Tax Code Zip File",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -20,
        340
      ],
      "parameters": {
        "url": "https://statutes.capitol.texas.gov/Docs/Zips/TX.pdf.zip",
        "options": {
          "response": {
            "response": {
              "responseFormat": "file"
            }
          }
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "cf983315-fe2a-43c1-8dc6-b17a217b845e",
      "name": "Extract Zip Files",
      "type": "n8n-nodes-base.compression",
      "position": [
        140,
        340
      ],
      "parameters": {},
      "typeVersion": 1.1
    },
    {
      "id": "8d02dd80-d14a-4e56-ab40-f2c4a445c57b",
      "name": "Files as Items",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        300,
        340
      ],
      "parameters": {
        "include": "allOtherFields",
        "options": {},
        "fieldToSplitOut": "$binary"
      },
      "typeVersion": 1
    },
    {
      "id": "038060dc-e01d-40ae-878d-5043bc36ab91",
      "name": "Extract PDF Contents",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        560,
        380
      ],
      "parameters": {
        "options": {},
        "operation": "pdf",
        "binaryPropertyName": "=file_{{ $itemIndex }}"
      },
      "typeVersion": 1
    },
    {
      "id": "4a85003b-b988-467b-b1cb-29206cbed879",
      "name": "Extract From Chapter",
      "type": "n8n-nodes-base.set",
      "position": [
        740,
        380
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "d791928a-d775-48cc-9004-a92cbe2403d3",
              "name": "contents",
              "type": "array",
              "value": "={{\n  $json.text\n    .substring($json.text.search(/\\nSec\\.\\nA[0-9]{1,4}\\.[0-9]{1,5}\\.AA/), $json.text.length)\n    .split(/\\nSec\\.\\nA[0-9]{1,2}\\.[0-9]{1,2}\\.AA/g)\n    .filter(text => !text.isEmpty())\n    .map(text => {\n      const output = text.replaceAll('AA', ' ').replaceAll('\\nA', ' ');\n      const title = output.substring(0, output.indexOf('.'));\n      const content = output.substring(output.indexOf('.')+1, output.length).replaceAll('\\n', ' ').trim();\n      return { title, content };\n    })\n}}"
            },
            {
              "id": "bc06641f-0b75-4a35-8752-78803231d5d6",
              "name": "labels",
              "type": "array",
              "value": "={{\n  $json.text\n    .match(/\\nSec\\.\\nA[0-9]{1,4}\\.[0-9]{1,5}\\.AA/g)\n    .map(text => ({\n        label: text.replaceAll('AA', ' ')\n                  .replaceAll('\\nA', ' ')\n                  .replaceAll('\\n', '')\n                  .trim()\n    }))\n}}"
            }
          ]
        }
      },
      "typeVersion": 3.3
    },
    {
      "id": "ee338786-91df-4784-bd7e-f86c0e13ca26",
      "name": "Map To Sections",
      "type": "n8n-nodes-base.set",
      "position": [
        740,
        520
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "60109e60-d760-45bb-be09-7cb2b5eb85bc",
              "name": "section",
              "type": "array",
              "value": "={{\n  $json.labels.map((label, idx) => ({\n    label: label.label.match(/\\d.+/)[0].replace(/\\.$/, ''),\n    title: $json.contents[idx].title,\n    content: $json.contents[idx].content,\n    chapter: $('Extract PDF Contents').first().json.info.Title,\n  }))\n}}"
            }
          ]
        }
      },
      "typeVersion": 3.3
    },
    {
      "id": "41c9899d-26d7-48af-9af2-8563ab0fb7e4",
      "name": "Execute Workflow Trigger",
      "type": "n8n-nodes-base.executeWorkflowTrigger",
      "position": [
        1313,
        1200
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "3a93c19b-09d9-4e38-8b0c-2008fc03f7fc",
      "name": "Get Mistral Embeddings",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1660,
        1060
      ],
      "parameters": {
        "url": "https://api.mistral.ai/v1/embeddings",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "authentication": "predefinedCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "model",
              "value": "mistral-embed"
            },
            {
              "name": "encoding_format",
              "value": "float"
            },
            {
              "name": "input",
              "value": "={{ $json.query }}"
            }
          ]
        },
        "nodeCredentialType": "mistralCloudApi"
      },
      "credentials": {
        "mistralCloudApi": {
          "id": "EIl2QxhXAS9Hkg37",
          "name": "Mistral Cloud account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "1adc12bd-ba61-4f1a-b1f9-3f19a542e294",
      "name": "Content Chunking @ 50k Chars",
      "type": "n8n-nodes-base.set",
      "position": [
        1580,
        400
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "7753a4f4-3ec2-4c05-81df-3d5e8979a478",
              "name": "=content",
              "type": "array",
              "value": "={{ new Array(Math.round($json.content.length / Math.min($json.content.length, 30000))).fill('').map((_,idx) => $json.content.substring(idx * 30000, idx * 50000 + 30000)) }}"
            }
          ]
        }
      },
      "typeVersion": 3.3
    },
    {
      "id": "ff8adce2-8f73-4a8f-b512-5aa560ca0954",
      "name": "Split Out Chunks",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        1580,
        580
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "content"
      },
      "typeVersion": 1
    },
    {
      "id": "5f08ce3c-240d-4c91-bb23-953866fd0361",
      "name": "For Each Section...",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        1400,
        280
      ],
      "parameters": {
        "options": {},
        "batchSize": 5
      },
      "typeVersion": 3
    },
    {
      "id": "6346cf67-7d93-4315-bb0d-2e016c9853b9",
      "name": "Sections To List",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        940,
        380
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "section"
      },
      "typeVersion": 1
    },
    {
      "id": "95e34952-03e2-40e3-a245-9da8c9e1f249",
      "name": "Only Valid Sections",
      "type": "n8n-nodes-base.filter",
      "position": [
        1100,
        380
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "or",
          "conditions": [
            {
              "id": "121e8f86-2ead-47e0-8e17-52d7c6ba8265",
              "operator": {
                "type": "string",
                "operation": "notEmpty",
                "singleValue": true
              },
              "leftValue": "={{ $json.content }}",
              "rightValue": ""
            }
          ]
        }
      },
      "typeVersion": 2
    },
    {
      "id": "dfe1818f-93b7-4116-8a6e-dcb2e6c23fcf",
      "name": "Use Qdrant Search API1",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1860,
        1060
      ],
      "parameters": {
        "url": "=http://qdrant:6333/collections/texas_tax_codes/points/search",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "authentication": "predefinedCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "limit",
              "value": "={{ 4 }}"
            },
            {
              "name": "vector",
              "value": "={{ $json.data[0].embedding }}"
            },
            {
              "name": "with_payload",
              "value": "={{ true }}"
            }
          ]
        },
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "588318e6-e188-4d99-9c11-39b2f3fb1c18",
      "name": "Use Qdrant Scroll API",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1660,
        1320
      ],
      "parameters": {
        "url": "=http://qdrant:6333/collections/texas_tax_codes/points/scroll",
        "method": "POST",
        "options": {
          "pagination": {
            "pagination": {
              "parameters": {
                "parameters": [
                  {
                    "name": "next_page_offset",
                    "type": "body",
                    "value": "={{ $response.body.result.next_page_offset }}"
                  }
                ]
              },
              "completeExpression": "={{ $response.body.result.next_page_offset === null }}",
              "paginationCompleteWhen": "other"
            }
          }
        },
        "sendBody": true,
        "authentication": "predefinedCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "limit",
              "value": "={{ 100 }}"
            },
            {
              "name": "with_payload",
              "value": "={{ true }}"
            },
            {
              "name": "filter",
              "value": "={{\n{\n  \"must\": [\n    ($json.query.section\n      ? { \"key\": \"metadata.section\", \"match\": { \"value\": $json.query.section } }\n      : { \"key\": \"metadata.chapter\", \"match\": { \"value\": $json.query.chapter } }\n    )\n  ]\n}\n}}"
            }
          ]
        },
        "nodeCredentialType": "qdrantApi"
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "bbf01344-c60e-42b3-8d7d-2bb360876d79",
      "name": "Get Search Response",
      "type": "n8n-nodes-base.set",
      "position": [
        1860,
        1320
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "08ad2d6e-4ed1-409e-b89c-1f0c7fdf1b64",
              "name": "response",
              "type": "string",
              "value": "=---\nchapter: {{ $json.result.points.first().payload.metadata.chapter }}\nsection: {{ $json.result.points.first().payload.metadata.section }}\ntitle: {{ $json.result.points.first().payload.metadata.title }}\n---\n{{ $json.result.points\n      .toSorted((a,b) => (a.payload.metadata.content_order || 0) - (b.payload.metadata.content_order || 0))\n      .map(point => point.payload.content).join('\\n') }}"
            }
          ]
        }
      },
      "typeVersion": 3.3
    },
    {
      "id": "3b23ff5e-158a-470f-a262-d001d52feeba",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -100,
        183.38345554113084
      ],
      "parameters": {
        "color": 7,
        "width": 571.4359274276384,
        "height": 352.65642339230595,
        "content": "## Step 1. Download the Tax Code PDF\n[Read more about handling Zip Files](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.compression/)\n\nLet's begin by pulling a zip file containing all the tax codes as separate PDF files. We can unzip on the fly with n8n's compression node."
      },
      "typeVersion": 1
    },
    {
      "id": "02826887-eb26-48a0-928e-fe56ee008425",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        500,
        199.87747230655896
      ],
      "parameters": {
        "color": 7,
        "width": 777.897719182587,
        "height": 503.3459981018574,
        "content": "## Step 2. Extract and Partition Into Chapters & Sections\n[Learn more about reading PDF Files](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.extractfromfile)\n\nRather than ingest the raw text of the PDF, we'll be a little more strategic and extract the tax code sections separately instead. Not only will this provide cleaner results, we'll also be able to fetch sections in isolation if required."
      },
      "typeVersion": 1
    },
    {
      "id": "31a34972-31ab-4b96-9d09-cd30a3b184cf",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1300,
        108.82958126396
      ],
      "parameters": {
        "color": 7,
        "width": 1045.1698686248747,
        "height": 771.1260499456115,
        "content": "## Step 3. Save into Qdrant VectorStore\n[Read more about using the Qdrant Vectorstore](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreqdrant)\n\nWe'll save our data into a Qdrant collection being mindful to use metadata to take full advantage of Qdrant's filtering capabilities later.\nThough not always required, since the tax code documents can be quite large we'll implement a loop here to throttle the number of tokens being processed as to not trip the Mistral.ai rate limits for embeddings."
      },
      "typeVersion": 1
    },
    {
      "id": "27039fa6-6388-45ee-a2d5-6bb68554944b",
      "name": "Qdrant Vector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        1760,
        400
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "list",
          "value": "texas_tax_codes",
          "cachedResultName": "texas_tax_codes"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "NyinAS3Pgfik66w5",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "5ec16c20-eb1e-454a-8165-594d83dd8711",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        360,
        900
      ],
      "parameters": {
        "color": 7,
        "width": 858.1415560000298,
        "height": 513.2269439624808,
        "content": "## Step 4. Build a Tax Code Assistant ChatBot\n[Learn more about using AI Agents in n8n](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent)\n\nFor our chatbot, we'll use an AI agent node because we want to achieve more than one functionality. The first will be querying to relevant texts to answer a user's question and secondly, a direct search feature to pull full section text when requested."
      },
      "typeVersion": 1
    },
    {
      "id": "d5145c6f-768b-42d8-a045-20e045f52b0b",
      "name": "Sticky Note4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1240,
        904.6076722083936
      ],
      "parameters": {
        "color": 7,
        "width": 1030.0926850706744,
        "height": 577.7854680142904,
        "content": "## Step 5. Use Qdrant API as Tools\n[Learn more about using AI Agents in n8n](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent)\n\nOur Ask Tool will generate embeddings using Mistral.ai and query our Qdrant collection using the Qdrant Search API.\nOur Search Tool will use filter our Qdrant collection using the Qdrant Scroll API, matching on each doc's section metadata key."
      },
      "typeVersion": 1
    },
    {
      "id": "ccf50479-53d8-4edf-8f2b-73060a6a6e0f",
      "name": "AI Agent",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        700,
        1063
      ],
      "parameters": {
        "options": {
          "systemMessage": "You are a helpful assistant answering user questions on the tax code legistration for the state of Texas, united states of america.\n\nAlong with your response also note in which chapter and section number the information was found. "
        }
      },
      "typeVersion": 1.6
    },
    {
      "id": "d7e7fa9e-73ba-4df3-862e-25af63d9d9b4",
      "name": "Window Buffer Memory",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        820,
        1223
      ],
      "parameters": {},
      "typeVersion": 1.2
    },
    {
      "id": "a79bdbcd-7157-470a-aadc-bd3f8a4c40d2",
      "name": "When chat message received",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        420,
        1063
      ],
      "webhookId": "db2b118d-942e-4be9-b154-7df887232f97",
      "parameters": {
        "public": true,
        "options": {
          "loadPreviousSession": "memory"
        },
        "initialMessages": ""
      },
      "typeVersion": 1
    },
    {
      "id": "6046f137-b508-484f-8577-ac51a35eee09",
      "name": "Window Buffer Memory1",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        420,
        1223
      ],
      "parameters": {},
      "typeVersion": 1.2
    },
    {
      "id": "30f238f8-1987-4d6d-b06d-ac2106ea3734",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        700,
        1223
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "8a8490f6-5957-495c-a7af-15cec669f39c",
      "name": "1sec",
      "type": "n8n-nodes-base.wait",
      "position": [
        2160,
        660
      ],
      "webhookId": "852317f0-aadf-4658-ae44-d05e5de29302",
      "parameters": {
        "amount": 1
      },
      "executeOnce": false,
      "typeVersion": 1.1
    },
    {
      "id": "142450f5-8ec1-4ae6-b25c-df3233394d4e",
      "name": "Ask Tool",
      "type": "@n8n/n8n-nodes-langchain.toolWorkflow",
      "position": [
        960,
        1223
      ],
      "parameters": {
        "name": "query_tax_code_knowledgebase",
        "fields": {
          "values": [
            {
              "name": "route",
              "stringValue": "ask_tool"
            }
          ]
        },
        "workflowId": "={{ $workflow.id }}",
        "description": "Call this tool to query the tax code database for information. Structure your query in the form of a question for best results."
      },
      "typeVersion": 1.1
    },
    {
      "id": "ee455a4e-c9a1-49b2-a036-d3f3d34099c6",
      "name": "Search Tool",
      "type": "@n8n/n8n-nodes-langchain.toolWorkflow",
      "position": [
        1060,
        1223
      ],
      "parameters": {
        "name": "get_tax_code_section",
        "fields": {
          "values": [
            {
              "name": "route",
              "stringValue": "search_tool"
            }
          ]
        },
        "workflowId": "={{ $workflow.id }}",
        "description": "Call this tool to search for specific sections of the tax code document. Pass in either a known section number/id to get the section's text or a known chapter name to return all sections for the chapter.",
        "jsonSchemaExample": "{\n\t\"chapter\": \"some_value\",\n    \"section\": \"Sec 1.01\"\n}",
        "specifyInputSchema": true
      },
      "typeVersion": 1.1
    },
    {
      "id": "f3240f8d-8869-4088-8e4f-d4e23a3c12a8",
      "name": "Switch",
      "type": "n8n-nodes-base.switch",
      "position": [
        1473,
        1200
      ],
      "parameters": {
        "rules": {
          "values": [
            {
              "outputKey": "ask_tool",
              "conditions": {
                "options": {
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "operator": {
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.route }}",
                    "rightValue": "ask_tool"
                  }
                ]
              },
              "renameOutput": true
            },
            {
              "outputKey": "search_tool",
              "conditions": {
                "options": {
                  "leftValue": "",
                  "caseSensitive": true,
                  "typeValidation": "strict"
                },
                "combinator": "and",
                "conditions": [
                  {
                    "id": "909362ed-eb97-405c-9f2f-f404a3bfeaf3",
                    "operator": {
                      "name": "filter.operator.equals",
                      "type": "string",
                      "operation": "equals"
                    },
                    "leftValue": "={{ $json.route }}",
                    "rightValue": "search_tool"
                  }
                ]
              },
              "renameOutput": true
            }
          ]
        },
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "71441b5a-099b-49e0-a212-3087d958b38b",
      "name": "Get Ask Response",
      "type": "n8n-nodes-base.set",
      "position": [
        2060,
        1060
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "eb5f2b3c-bb88-4cae-a960-164016c9a9e4",
              "name": "response",
              "type": "string",
              "value": "=|chapter|section|title|content|\n|-|-|-|-|\n{{\n  $json.result.map(row => [\n    '',\n    row.payload.metadata.chapter,\n    row.payload.metadata.section,\n    row.payload.metadata.title,\n    row.payload.content,\n    ''\n  ].join('|')).join('\\n')\n}}"
            }
          ]
        }
      },
      "typeVersion": 3.3
    },
    {
      "id": "54a744a3-95c9-4d9a-b1e7-e266a51f77ca",
      "name": "Sticky Note5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -520,
        -79.56762868134751
      ],
      "parameters": {
        "width": 383.14868794462586,
        "height": 563.604204119637,
        "content": "## Try Me Out!\n### This workflow builds an AI powered Legal assistant who answers questions about tax codes.\n* Download publically available tax code PDFs from the relevant government website.\n* Strategically exact tax code sections and store these in our Qdrant Vectorstore using Mistral.ai embeddings.\n* Use an AI Agent to answer user's tax questions by attaching tools which query our Qdrant vectorstore.\n\n### Need Help?\nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!\n\nHappy Hacking!"
      },
      "typeVersion": 1
    },
    {
      "id": "7f802f12-03e0-4b8e-a880-8c26242c1152",
      "name": "Sticky Note6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        790.1971986436472,
        720
      ],
      "parameters": {
        "color": 5,
        "width": 489.3944544742706,
        "height": 131.61363932813174,
        "content": "### 🙋‍♀️What's the difference?\nWith raw PDF data, we may blur the boundaries between chapters and sections making later results hard to find, incoherent or misleading.\nDepending on your use-case, store your data in a way you intend to retrieve it!"
      },
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "8a8490f6-5957-495c-a7af-15cec669f39c": {
      "main": [
        [
          {
            "node": "5f08ce3c-240d-4c91-bb23-953866fd0361",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f3240f8d-8869-4088-8e4f-d4e23a3c12a8": {
      "main": [
        [
          {
            "node": "3a93c19b-09d9-4e38-8b0c-2008fc03f7fc",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "588318e6-e188-4d99-9c11-39b2f3fb1c18",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "142450f5-8ec1-4ae6-b25c-df3233394d4e": {
      "ai_tool": [
        [
          {
            "node": "ccf50479-53d8-4edf-8f2b-73060a6a6e0f",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "ee455a4e-c9a1-49b2-a036-d3f3d34099c6": {
      "ai_tool": [
        [
          {
            "node": "ccf50479-53d8-4edf-8f2b-73060a6a6e0f",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "8d02dd80-d14a-4e56-ab40-f2c4a445c57b": {
      "main": [
        [
          {
            "node": "038060dc-e01d-40ae-878d-5043bc36ab91",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "ee338786-91df-4784-bd7e-f86c0e13ca26": {
      "main": [
        [
          {
            "node": "6346cf67-7d93-4315-bb0d-2e016c9853b9",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "6346cf67-7d93-4315-bb0d-2e016c9853b9": {
      "main": [
        [
          {
            "node": "95e34952-03e2-40e3-a245-9da8c9e1f249",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "ff8adce2-8f73-4a8f-b512-5aa560ca0954": {
      "main": [
        [
          {
            "node": "27039fa6-6388-45ee-a2d5-6bb68554944b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "cf983315-fe2a-43c1-8dc6-b17a217b845e": {
      "main": [
        [
          {
            "node": "8d02dd80-d14a-4e56-ab40-f2c4a445c57b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "30f238f8-1987-4d6d-b06d-ac2106ea3734": {
      "ai_languageModel": [
        [
          {
            "node": "ccf50479-53d8-4edf-8f2b-73060a6a6e0f",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "f0851949-1036-4040-84df-61295cc5db74": {
      "ai_document": [
        [
          {
            "node": "27039fa6-6388-45ee-a2d5-6bb68554944b",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "5f08ce3c-240d-4c91-bb23-953866fd0361": {
      "main": [
        null,
        [
          {
            "node": "1adc12bd-ba61-4f1a-b1f9-3f19a542e294",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "95e34952-03e2-40e3-a245-9da8c9e1f249": {
      "main": [
        [
          {
            "node": "5f08ce3c-240d-4c91-bb23-953866fd0361",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "27039fa6-6388-45ee-a2d5-6bb68554944b": {
      "main": [
        [
          {
            "node": "8a8490f6-5957-495c-a7af-15cec669f39c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "4a85003b-b988-467b-b1cb-29206cbed879": {
      "main": [
        [
          {
            "node": "ee338786-91df-4784-bd7e-f86c0e13ca26",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "038060dc-e01d-40ae-878d-5043bc36ab91": {
      "main": [
        [
          {
            "node": "4a85003b-b988-467b-b1cb-29206cbed879",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d7e7fa9e-73ba-4df3-862e-25af63d9d9b4": {
      "ai_memory": [
        [
          {
            "node": "ccf50479-53d8-4edf-8f2b-73060a6a6e0f",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "a1ecb096-4d31-4993-b801-ca3f09a9edc7": {
      "main": [
        [
          {
            "node": "cf983315-fe2a-43c1-8dc6-b17a217b845e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "588318e6-e188-4d99-9c11-39b2f3fb1c18": {
      "main": [
        [
          {
            "node": "bbf01344-c60e-42b3-8d7d-2bb360876d79",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "6046f137-b508-484f-8577-ac51a35eee09": {
      "ai_memory": [
        [
          {
            "node": "a79bdbcd-7157-470a-aadc-bd3f8a4c40d2",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "3a93c19b-09d9-4e38-8b0c-2008fc03f7fc": {
      "main": [
        [
          {
            "node": "dfe1818f-93b7-4116-8a6e-dcb2e6c23fcf",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "dfe1818f-93b7-4116-8a6e-dcb2e6c23fcf": {
      "main": [
        [
          {
            "node": "71441b5a-099b-49e0-a212-3087d958b38b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "751b283b-ea88-4fcd-ace3-3c86631f8876": {
      "ai_embedding": [
        [
          {
            "node": "27039fa6-6388-45ee-a2d5-6bb68554944b",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "41c9899d-26d7-48af-9af2-8563ab0fb7e4": {
      "main": [
        [
          {
            "node": "f3240f8d-8869-4088-8e4f-d4e23a3c12a8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a79bdbcd-7157-470a-aadc-bd3f8a4c40d2": {
      "main": [
        [
          {
            "node": "ccf50479-53d8-4edf-8f2b-73060a6a6e0f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1adc12bd-ba61-4f1a-b1f9-3f19a542e294": {
      "main": [
        [
          {
            "node": "ff8adce2-8f73-4a8f-b512-5aa560ca0954",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "41d10b61-9fbe-446e-a65a-0db6e0116e5b": {
      "ai_textSplitter": [
        [
          {
            "node": "f0851949-1036-4040-84df-61295cc5db74",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "1bb3c94e-326e-41ca-82e4-102a598dba39": {
      "main": [
        [
          {
            "node": "a1ecb096-4d31-4993-b801-ca3f09a9edc7",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
常见问题

如何使用这个工作流?

复制上方的 JSON 配置代码,在您的 n8n 实例中创建新工作流并选择「从 JSON 导入」,粘贴配置后根据需要修改凭证设置即可。

这个工作流适合什么场景?

高级 - 财务, 人工智能

需要付费吗?

本工作流完全免费,您可以直接导入使用。但请注意,工作流中使用的第三方服务(如 OpenAI API)可能需要您自行付费。

工作流信息
难度等级
高级
节点数量38
分类2
节点类型21
难度说明

适合高级用户,包含 16+ 个节点的复杂工作流

作者
Jimleuk

Jimleuk

@jimleuk

Freelance consultant based in the UK specialising in AI-powered automations. I work with select clients tackling their most challenging projects. For business enquiries, send me an email at hello@jimle.uk LinkedIn: https://www.linkedin.com/in/jimleuk/ X/Twitter: https://x.com/jimle_uk

外部链接
在 n8n.io 查看

分享此工作流

分类

分类: 34