Bright DataとGemini AIを通じて、リアルタイム検索データでチャット応答を強化する
上級
これはProduct, AI, Marketing分野の自動化ワークフローで、18個のノードを含みます。主にSet, McpClient, McpClientTool, ManualTrigger, Agentなどのノードを使用、AI技術を活用したスマート自動化を実現。 Bright DataとGemini AIを使用してリアルタイム検索データによるチャット応答の強化
前提条件
- •ターゲットAPIの認証情報が必要な場合あり
- •Google Gemini API Key
使用ノード (18)
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "8jdT4wXjV5NljqKa",
"meta": {
"instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
"templateCredsSetupCompleted": true
},
"name": "Enhance Chat Responses with Real-Time Search Data via Bright Data & Gemini AI",
"tags": [
{
"id": "Kujft2FOjmOVQAmJ",
"name": "Engineering",
"createdAt": "2025-04-09T01:31:00.558Z",
"updatedAt": "2025-04-09T01:31:00.558Z"
},
{
"id": "ZOwtAMLepQaGW76t",
"name": "Building Blocks",
"createdAt": "2025-04-13T15:23:40.462Z",
"updatedAt": "2025-04-13T15:23:40.462Z"
},
{
"id": "ddPkw7Hg5dZhQu2w",
"name": "AI",
"createdAt": "2025-04-13T05:38:08.053Z",
"updatedAt": "2025-04-13T05:38:08.053Z"
}
],
"nodes": [
{
"id": "7294b048-5804-4620-a53e-52df293c3df1",
"name": "チャットメッセージ受信時",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-460,
160
],
"webhookId": "3ad383ee-ded9-4a46-9165-9af0bad6c450",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "8ff09a26-ffa4-451d-9452-35b8f2936cab",
"name": "AIエージェント",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
-140,
60
],
"parameters": {
"options": {
"systemMessage": "You are a helpful assistant.\n\nUse MCP Search Engine assistant tools for Bright Data for Google, Bing or Yandex Search. \n\nImportant: Return the response to Chat and also perform the webhook notification of responses.\n\nUse the relevant tool in the order of execution. "
}
},
"typeVersion": 1.8
},
{
"id": "92352366-7fe5-407d-aa34-96ac19b13284",
"name": "Google Gemini チャットモデル",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
-240,
280
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "b6d947d1-9752-4aff-834c-de99ff1ad903",
"name": "シンプルメモリ",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
-60,
280
],
"parameters": {},
"typeVersion": 1.3
},
{
"id": "73273d82-2a2f-41a2-ad1c-369f7a05ebe1",
"name": "「ワークフローをテスト」クリック時",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-480,
-200
],
"parameters": {},
"typeVersion": 1
},
{
"id": "39464933-03e0-46a2-ba3b-ab96aa14461e",
"name": "MCPクライアント Bright Data全ツール一覧",
"type": "n8n-nodes-mcp.mcpClient",
"position": [
-260,
-200
],
"parameters": {},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"typeVersion": 1
},
{
"id": "9d0d498f-10da-4a66-9e59-1773089d5d7c",
"name": "MCPクライアント Bright Data検索ツール",
"type": "n8n-nodes-mcp.mcpClient",
"position": [
160,
-200
],
"parameters": {
"toolName": "={{ $('MCP Client list all tools for Bright Data').item.json.tools[0].name }}",
"operation": "executeTool",
"toolParameters": "={\n \"query\": \"{{ $json.search_query }}\",\n \"engine\": \"google\"\n} "
},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"typeVersion": 1
},
{
"id": "346fd1f7-be97-47b6-b767-74382dc90979",
"name": "検索クエリ設定",
"type": "n8n-nodes-base.set",
"position": [
-60,
-200
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "214e61a0-3587-453f-baf5-eac013990857",
"name": "search_query",
"type": "string",
"value": "Bright Data"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "1dc4dabe-d651-4b43-b561-4528be14e578",
"name": "Google Bright Data用検索エンジン",
"type": "n8n-nodes-mcp.mcpClientTool",
"notes": "Scrape search results from Google, Bing or Yandex. Returns SERP results in markdown (URL, title, description)",
"position": [
240,
540
],
"parameters": {
"toolName": "search_engine",
"operation": "executeTool",
"toolParameters": "={\n \"query\": \"{{ $json.chatInput }}\",\n \"engine\": \"google\"\n}"
},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"notesInFlow": true,
"typeVersion": 1
},
{
"id": "029f5e0e-070f-47a7-8c77-2b59ca01ada4",
"name": "Bright Data用Bing検索エンジン",
"type": "n8n-nodes-mcp.mcpClientTool",
"notes": "Scrape search results from Google, Bing or Yandex. Returns SERP results in markdown (URL, title, description)",
"position": [
40,
540
],
"parameters": {
"toolName": "search_engine",
"operation": "executeTool",
"toolParameters": "={\n \"query\": \"{{ $json.chatInput }}\",\n \"engine\": \"bing\"\n} "
},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"notesInFlow": true,
"typeVersion": 1
},
{
"id": "580d37de-deb9-49cf-b9b8-4d14edca28f2",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
-40,
460
],
"parameters": {
"color": 4,
"width": 640,
"height": 240,
"content": "## Bright Data Search Engines"
},
"typeVersion": 1
},
{
"id": "bb77ba7c-c70e-4912-96f6-4f63b966c7a9",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-100,
-260
],
"parameters": {
"color": 3,
"width": 460,
"height": 260,
"content": "## Bright Data Google Search"
},
"typeVersion": 1
},
{
"id": "ecdd9f42-f56c-4bdb-b778-cd3b7545bb37",
"name": "MCPクライアント 全ツール一覧",
"type": "n8n-nodes-mcp.mcpClientTool",
"position": [
260,
280
],
"parameters": {},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"typeVersion": 1
},
{
"id": "a1adfa84-6e1a-4b5c-9148-feddb1e6ab72",
"name": "HTTP Webhook 通知リクエスト",
"type": "@n8n/n8n-nodes-langchain.toolHttpRequest",
"position": [
500,
240
],
"parameters": {
"url": "https://webhook.site/daf9d591-a130-4010-b1d3-0c66f8fcf467",
"method": "POST",
"sendBody": true,
"parametersBody": {
"values": [
{
"name": "chat_response"
}
]
},
"toolDescription": "Webhook notification for search responses"
},
"typeVersion": 1.1
},
{
"id": "ae88bb19-170f-443f-b777-561cf2e3be25",
"name": "付箋2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-100,
-400
],
"parameters": {
"width": 440,
"height": 120,
"content": "## Disclaimer\nThis template is only available on n8n self-hosted as it's making use of the community node for MCP Client."
},
"typeVersion": 1
},
{
"id": "80ac697d-2c4a-4f97-82aa-edcabbf7ef6f",
"name": "Bright Data用Yandex検索エンジン",
"type": "n8n-nodes-mcp.mcpClientTool",
"notes": "Scrape search results from Google, Bing or Yandex. Returns SERP results in markdown (URL, title, description)",
"position": [
460,
540
],
"parameters": {
"toolName": "search_engine",
"operation": "executeTool",
"toolParameters": "={\n \"query\": \"{{ $json.chatInput }}\",\n \"engine\": \"yandex\"\n}"
},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"notesInFlow": true,
"typeVersion": 1
},
{
"id": "dfb2117d-782f-44d9-baca-1ee4b0fef863",
"name": "付箋3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-940,
-40
],
"parameters": {
"color": 5,
"width": 400,
"height": 220,
"content": "## Note\nUse Bright Data MCP Search Engine assistant tools to perform Google, Bing or Yandex Search.\n\nThe AI Agent will make use of suitable search engine-based tools, returns the response to Chat and also performs the Webhook notification call for sending the AI responses via the MCP Client tools.\n\nSource - https://github.com/luminati-io/brightdata-mcp"
},
"typeVersion": 1
},
{
"id": "694b3381-8ebe-4afb-be93-019715c0c2cf",
"name": "付箋4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-440,
460
],
"parameters": {
"width": 300,
"height": 180,
"content": "## LLM Usage\nGoogle Gemini is employed by the AI agent to understand and interpret user queries. Based on this interpretation, the agent initiates a call to the appropriate MCP client to perform the required web search task."
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "2382b23d-fd06-4f10-bcbd-f09a944a1c8d",
"connections": {
"b6d947d1-9752-4aff-834c-de99ff1ad903": {
"ai_memory": [
[
{
"node": "8ff09a26-ffa4-451d-9452-35b8f2936cab",
"type": "ai_memory",
"index": 0
}
]
]
},
"346fd1f7-be97-47b6-b767-74382dc90979": {
"main": [
[
{
"node": "9d0d498f-10da-4a66-9e59-1773089d5d7c",
"type": "main",
"index": 0
}
]
]
},
"92352366-7fe5-407d-aa34-96ac19b13284": {
"ai_languageModel": [
[
{
"node": "8ff09a26-ffa4-451d-9452-35b8f2936cab",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"ecdd9f42-f56c-4bdb-b778-cd3b7545bb37": {
"ai_tool": [
[
{
"node": "8ff09a26-ffa4-451d-9452-35b8f2936cab",
"type": "ai_tool",
"index": 0
}
]
]
},
"7294b048-5804-4620-a53e-52df293c3df1": {
"main": [
[
{
"node": "8ff09a26-ffa4-451d-9452-35b8f2936cab",
"type": "main",
"index": 0
}
]
]
},
"73273d82-2a2f-41a2-ad1c-369f7a05ebe1": {
"main": [
[
{
"node": "39464933-03e0-46a2-ba3b-ab96aa14461e",
"type": "main",
"index": 0
}
]
]
},
"029f5e0e-070f-47a7-8c77-2b59ca01ada4": {
"ai_tool": [
[
{
"node": "8ff09a26-ffa4-451d-9452-35b8f2936cab",
"type": "ai_tool",
"index": 0
}
]
]
},
"1dc4dabe-d651-4b43-b561-4528be14e578": {
"ai_tool": [
[
{
"node": "8ff09a26-ffa4-451d-9452-35b8f2936cab",
"type": "ai_tool",
"index": 0
}
]
]
},
"80ac697d-2c4a-4f97-82aa-edcabbf7ef6f": {
"ai_tool": [
[
{
"node": "8ff09a26-ffa4-451d-9452-35b8f2936cab",
"type": "ai_tool",
"index": 0
}
]
]
},
"a1adfa84-6e1a-4b5c-9148-feddb1e6ab72": {
"ai_tool": [
[
{
"node": "8ff09a26-ffa4-451d-9452-35b8f2936cab",
"type": "ai_tool",
"index": 0
}
]
]
},
"39464933-03e0-46a2-ba3b-ab96aa14461e": {
"main": [
[
{
"node": "346fd1f7-be97-47b6-b767-74382dc90979",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - プロダクト, 人工知能, マーケティング
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
AIアゲント駆動のProduct Huntデータ抽出と検索(Bright DataとGoogle Geminiを使用)
Bright Data MCPとGoogle Gemini AIを使ってProduct Huntデータをクロールして検索
Set
Function
Mcp Client
+
Set
Function
Mcp Client
21 ノードRanjan Dailata
人工知能
ビング・データとGoogle Geminiを使ってIndeedの企業情報を抽出し、集約
Bright DataとGoogle Geminiを使ってIndeedの企業情報を抽出し、集約する
Set
Markdown
Http Request
+
Set
Markdown
Http Request
15 ノードRanjan Dailata
人事
Indeed社データスクレイピングとAirtable、Bright Data、Google Geminiの統合
Airtable、Bright Data、Google Geminiを用いたIndeedデータのスクレイピングと集約
If
Set
Wait
+
If
Set
Wait
19 ノードRanjan Dailata
人事
Bright Data を使用して Google Gemini で Etsy データをスクレイピングし自動化
Etsy データマイニングの自動化を実現:Bright Data によるスクレピング、Google Gemini
Set
Function
Split Out
+
Set
Function
Split Out
19 ノードRanjan Dailata
プロダクト
DNB企業検索と抽出:Bright DataとOpenAI 4o miniを使用
Bright Data そして OpenAI 4o mini に基づく DNB 社検索と抽出
Set
Function
Mcp Client
+
Set
Function
Mcp Client
18 ノードRanjan Dailata
プロダクト
ブランド化されたAI駆動のウェブチャットボットの作成
ブランドドのAI駆動型ウェブサイトチャットボットを作成
If
Set
Code
+
If
Set
Code
24 ノードWayne Simpson
プロダクト