DNB企業検索と抽出:Bright DataとOpenAI 4o miniを使用

上級

これはProduct, AI, Marketing分野の自動化ワークフローで、18個のノードを含みます。主にSet, Function, McpClient, HttpRequest, ManualTriggerなどのノードを使用、AI技術を活用したスマート自動化を実現。 Bright Data そして OpenAI 4o mini に基づく DNB 社検索と抽出

前提条件
  • ターゲットAPIの認証情報が必要な場合あり
  • OpenAI API Key
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
  "id": "fw2n6WbzzOSBziD2",
  "meta": {
    "instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
    "templateCredsSetupCompleted": true
  },
  "name": "DNB Company Search & Extract with Bright Data and Open AI 4o mini",
  "tags": [
    {
      "id": "Kujft2FOjmOVQAmJ",
      "name": "Engineering",
      "createdAt": "2025-04-09T01:31:00.558Z",
      "updatedAt": "2025-04-09T01:31:00.558Z"
    },
    {
      "id": "ddPkw7Hg5dZhQu2w",
      "name": "AI",
      "createdAt": "2025-04-13T05:38:08.053Z",
      "updatedAt": "2025-04-13T05:38:08.053Z"
    }
  ],
  "nodes": [
    {
      "id": "647ba3af-65c7-40ae-954d-1eacfd032057",
      "name": "ワークフロー「テスト」クリック時",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -1140,
        440
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "5ac1546f-0215-4ba4-996d-8b8298e8813b",
      "name": "付箋ノート",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1140,
        120
      ],
      "parameters": {
        "width": 400,
        "height": 240,
        "content": "## Note\n\nDeals with the DNB (https://www.dnb.com/) data extract using the Bright Data MCP Search and Markdown Web scraper\n\n**Please make sure to update the search query and the Webhook Notification URL. Test using https://webhook.site/**"
      },
      "typeVersion": 1
    },
    {
      "id": "98264472-dec1-4930-8759-cd7765aebbb7",
      "name": "入力フィールド設定",
      "type": "n8n-nodes-base.set",
      "position": [
        -700,
        440
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "88826650-2a6f-4d19-8a2f-27b039296a00",
              "name": "webhook_notification_url",
              "type": "string",
              "value": "https://webhook.site/c9118da2-1c54-460f-a83a-e5131b7098db"
            },
            {
              "id": "af7fb77a-7411-4f39-bd04-3bf8cc52a6f9",
              "name": "search",
              "type": "string",
              "value": "dnb starbucks url"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "a888ec8a-9211-4196-8577-4a93c0ebda51",
      "name": "Bright Data全ツール一覧",
      "type": "n8n-nodes-mcp.mcpClient",
      "position": [
        -920,
        440
      ],
      "parameters": {},
      "credentials": {
        "mcpClientApi": {
          "id": "JtatFSfA2kkwctYa",
          "name": "MCP Client (STDIO) account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "f06c235a-7726-4580-8ea3-1f34a789b153",
      "name": "検索エンジン用MCPクライアント",
      "type": "n8n-nodes-mcp.mcpClient",
      "position": [
        -480,
        440
      ],
      "parameters": {
        "toolName": "search_engine",
        "operation": "executeTool",
        "toolParameters": "={\n  \"query\": \"{{ $json.search }}\",\n  \"engine\": \"google\"\n} "
      },
      "credentials": {
        "mcpClientApi": {
          "id": "JtatFSfA2kkwctYa",
          "name": "MCP Client (STDIO) account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "7462d4bf-eb0e-48e2-988f-64874a8e5c51",
      "name": "DNB用Bright Data MCPクライアント",
      "type": "n8n-nodes-mcp.mcpClient",
      "notes": "Scrape a single webpage URL with advanced options for content extraction and get back the results in MarkDown language.",
      "position": [
        116,
        440
      ],
      "parameters": {
        "toolName": "scrape_as_markdown",
        "operation": "executeTool",
        "toolParameters": "={\n   \"url\": \"{{ $json.output.url }}\"\n} "
      },
      "credentials": {
        "mcpClientApi": {
          "id": "JtatFSfA2kkwctYa",
          "name": "MCP Client (STDIO) account"
        }
      },
      "notesInFlow": true,
      "typeVersion": 1
    },
    {
      "id": "1adbe55f-3649-45f3-825a-70ec021452dd",
      "name": "LLMを用いたDNB URLデータ抽出",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        -260,
        440
      ],
      "parameters": {
        "text": "=Extract the URLs for DNB  {{ $json.result.content[0].text }}\n",
        "batching": {},
        "promptType": "define",
        "hasOutputParser": true
      },
      "retryOnFail": true,
      "typeVersion": 1.7
    },
    {
      "id": "2fd7b177-2ac7-4cae-82af-47ea2cef08ed",
      "name": "LLMを用いたDNB構造化データ抽出",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        336,
        440
      ],
      "parameters": {
        "text": "=Extract the Company Profile from {{ $json.result.content[0].text }}\n\nOutput in a highly structured JSON format.\n",
        "batching": {},
        "promptType": "define",
        "hasOutputParser": true
      },
      "retryOnFail": true,
      "typeVersion": 1.7
    },
    {
      "id": "7d2101c1-edc6-4f2b-8d2e-577bc07ac2ee",
      "name": "構造化データ抽出用バイナリデータ作成",
      "type": "n8n-nodes-base.function",
      "position": [
        712,
        340
      ],
      "parameters": {
        "functionCode": "items[0].binary = {\n  data: {\n    data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n  }\n};\nreturn items;"
      },
      "typeVersion": 1
    },
    {
      "id": "937e7a23-32c8-4894-88c9-4c2d5b8fe274",
      "name": "構造化コンテンツをディスクに書き込み",
      "type": "n8n-nodes-base.readWriteFile",
      "position": [
        932,
        340
      ],
      "parameters": {
        "options": {},
        "fileName": "=d:\\DNB_Info.json",
        "operation": "write"
      },
      "typeVersion": 1
    },
    {
      "id": "0a40a4f0-6dba-4638-944d-192cd6e0c3a6",
      "name": "構造化データのWebhook通知開始",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        712,
        540
      ],
      "parameters": {
        "url": "={{ $('Set input fields').item.json.webhook_notification_url }}",
        "options": {},
        "sendBody": true,
        "bodyParameters": {
          "parameters": [
            {
              "name": "dnb_company_info",
              "value": "={{ $json.output }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "de9da4f8-126d-48bd-a391-92f69a44a613",
      "name": "付箋ノート2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -220,
        240
      ],
      "parameters": {
        "width": 440,
        "height": 120,
        "content": "## Disclaimer\nThis template is only available on n8n self-hosted as it's making use of the community node for MCP Client."
      },
      "typeVersion": 1
    },
    {
      "id": "534cc990-a9fe-4d8c-813c-19f864e92dd8",
      "name": "付箋ノート6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -700,
        120
      ],
      "parameters": {
        "color": 5,
        "width": 440,
        "height": 240,
        "content": "## LLM Usages\n\nOpenAI 4o mini LLM is being utilized for the structured data extraction handling."
      },
      "typeVersion": 1
    },
    {
      "id": "95d188e1-8e68-4843-a4d7-fd25d066b4aa",
      "name": "付箋ノート5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1140,
        -300
      ],
      "parameters": {
        "color": 7,
        "width": 400,
        "height": 400,
        "content": "## Logo\n\n\n![logo](https://images.seeklogo.com/logo-png/43/1/brightdata-logo-png_seeklogo-439974.png)\n"
      },
      "typeVersion": 1
    },
    {
      "id": "439f4da4-5055-4281-895f-38768bb62168",
      "name": "URL用構造化出力パーサー",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        -80,
        660
      ],
      "parameters": {
        "jsonSchemaExample": "{\n\t\"url\": \"url\"\n}"
      },
      "typeVersion": 1.2
    },
    {
      "id": "82b4a20c-2046-4314-8179-6123f18ea97f",
      "name": "構造化抽出用構造化出力パーサー",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        520,
        660
      ],
      "parameters": {
        "schemaType": "manual",
        "inputSchema": "{\n  \"$schema\": \"http://json-schema.org/schema#\",\n  \"title\": \"DNBCompanyProfile\",\n  \"type\": \"object\",\n  \"properties\": {\n    \"companyName\": { \"type\": \"string\" },\n    \"website\": { \"type\": \"string\", \"format\": \"uri\" },\n    \"dnbHooversFreeTrial\": { \"type\": \"string\" },\n    \"claimCompany\": { \"type\": \"string\" },\n\n    \"overview\": {\n      \"type\": \"object\",\n      \"properties\": {\n        \"doingBusinessAs\": { \"type\": \"string\" },\n        \"companyDescription\": { \"type\": \"string\" },\n        \"industry\": {\n          \"type\": \"array\",\n          \"items\": { \"type\": \"string\" }\n        },\n        \"address\": { \"type\": \"string\" },\n        \"phone\": { \"type\": [\"string\", \"null\"] },\n        \"employeesThisSite\": { \"type\": [\"string\", \"null\"] },\n        \"employeesAllSites\": { \"type\": [\"string\", \"null\"] },\n        \"revenue\": { \"type\": [\"string\", \"null\"] },\n        \"yearStarted\": { \"type\": [\"integer\", \"null\"] },\n        \"esgRanking\": { \"type\": [\"number\", \"null\"] },\n        \"esgIndustryAverage\": { \"type\": [\"number\", \"null\"] }\n      },\n      \"required\": [\"companyDescription\", \"industry\", \"address\"]\n    },\n\n    \"contacts\": {\n      \"type\": \"object\",\n      \"properties\": {\n        \"headline\": { \"type\": \"string\" },\n        \"contact1\": { \"type\": \"string\" },\n        \"contactLink\": { \"type\": \"string\" },\n        \"dnbHooversLogo\": { \"type\": \"string\" }\n      }\n    },\n\n    \"financialData\": {\n      \"type\": \"object\",\n      \"properties\": {\n        \"description\": { \"type\": \"string\" },\n        \"creditReportLink\": { \"type\": \"string\" }\n      }\n    },\n\n    \"creditReports\": {\n      \"type\": \"object\",\n      \"properties\": {\n        \"description\": { \"type\": \"string\" }\n      }\n    },\n\n    \"faq\": {\n      \"type\": \"object\",\n      \"properties\": {\n        \"location\": { \"type\": \"string\" },\n        \"industry\": { \"type\": \"string\" },\n        \"phoneNumber\": { \"type\": \"string\" },\n        \"website\": { \"type\": \"string\" },\n        \"employees\": { \"type\": \"string\" },\n        \"keyPrincipal\": { \"type\": \"string\" },\n        \"yearStarted\": { \"type\": \"string\" },\n        \"sales\": { \"type\": \"string\" }\n      }\n    }\n  },\n  \"required\": [\"companyName\", \"overview\"]\n}\n"
      },
      "typeVersion": 1.2
    },
    {
      "id": "a08383bf-b90b-4b82-9698-2f6c842749e2",
      "name": "URLデータ抽出用OpenAIチャットモデル",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        -280,
        660
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "vPKynKbDzJ5ZU4cU",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "5e577d2d-240a-4851-a1d7-04b66442049e",
      "name": "DNB構造化データ抽出用OpenAIチャットモデル",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        320,
        660
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "vPKynKbDzJ5ZU4cU",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "e8616327-2a5b-4815-bcff-ee154750f8cf",
  "connections": {
    "98264472-dec1-4930-8759-cd7765aebbb7": {
      "main": [
        [
          {
            "node": "f06c235a-7726-4580-8ea3-1f34a789b153",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f06c235a-7726-4580-8ea3-1f34a789b153": {
      "main": [
        [
          {
            "node": "1adbe55f-3649-45f3-825a-70ec021452dd",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "7462d4bf-eb0e-48e2-988f-64874a8e5c51": {
      "main": [
        [
          {
            "node": "2fd7b177-2ac7-4cae-82af-47ea2cef08ed",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1adbe55f-3649-45f3-825a-70ec021452dd": {
      "main": [
        [
          {
            "node": "7462d4bf-eb0e-48e2-988f-64874a8e5c51",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a888ec8a-9211-4196-8577-4a93c0ebda51": {
      "main": [
        [
          {
            "node": "98264472-dec1-4930-8759-cd7765aebbb7",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "439f4da4-5055-4281-895f-38768bb62168": {
      "ai_outputParser": [
        [
          {
            "node": "1adbe55f-3649-45f3-825a-70ec021452dd",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "647ba3af-65c7-40ae-954d-1eacfd032057": {
      "main": [
        [
          {
            "node": "a888ec8a-9211-4196-8577-4a93c0ebda51",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "2fd7b177-2ac7-4cae-82af-47ea2cef08ed": {
      "main": [
        [
          {
            "node": "7d2101c1-edc6-4f2b-8d2e-577bc07ac2ee",
            "type": "main",
            "index": 0
          },
          {
            "node": "0a40a4f0-6dba-4638-944d-192cd6e0c3a6",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a08383bf-b90b-4b82-9698-2f6c842749e2": {
      "ai_languageModel": [
        [
          {
            "node": "1adbe55f-3649-45f3-825a-70ec021452dd",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "82b4a20c-2046-4314-8179-6123f18ea97f": {
      "ai_outputParser": [
        [
          {
            "node": "2fd7b177-2ac7-4cae-82af-47ea2cef08ed",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "7d2101c1-edc6-4f2b-8d2e-577bc07ac2ee": {
      "main": [
        [
          {
            "node": "937e7a23-32c8-4894-88c9-4c2d5b8fe274",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5e577d2d-240a-4851-a1d7-04b66442049e": {
      "ai_languageModel": [
        [
          {
            "node": "2fd7b177-2ac7-4cae-82af-47ea2cef08ed",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    }
  }
}
よくある質問

このワークフローの使い方は?

上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。

このワークフローはどんな場面に適していますか?

上級 - プロダクト, 人工知能, マーケティング

有料ですか?

このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。

関連ワークフロー

AIアゲント駆動のProduct Huntデータ抽出と検索(Bright DataとGoogle Geminiを使用)
Bright Data MCPとGoogle Gemini AIを使ってProduct Huntデータをクロールして検索
Set
Function
Mcp Client
+
Set
Function
Mcp Client
21 ノードRanjan Dailata
人工知能
Brave検索による構造化データ抽出(Bright Data MCP + Google Gemini)
Bright Data MCPとGoogle Geminiを使用してBrave検索から構造化されたデータを抽出
Set
Switch
Function
+
Set
Switch
Function
24 ノードRanjan Dailata
人工知能
Bright Data を使用して Google Gemini で Etsy データをスクレイピングし自動化
Etsy データマイニングの自動化を実現:Bright Data によるスクレピング、Google Gemini
Set
Function
Split Out
+
Set
Function
Split Out
19 ノードRanjan Dailata
プロダクト
Bright Data と OpenAI 4o mini を使用した自動履歴書求人情報マッチングエンジン
Bright Data MCP と OpenAI 4o mini を使った自動履歴書職業マッチングエンジン
Set
Function
Split Out
+
Set
Function
Split Out
22 ノードRanjan Dailata
人事
Bright DataとOpenAIを使用したCrunchbase B2Bリード発見パイプライン
Bright Data、GPT-4o、Google Sheetsを使ってCrunchbaseからB2Bリードを抽出・要約する
Set
Function
Http Request
+
Set
Function
Http Request
21 ノードRanjan Dailata
営業
Bright Data MCPとGoogle Geminiを使用した法の事例研究抽出ツール、データマイニングツール
Bright Data MCPとGoogle Geminiを使用した法のケーススタディ抽出データマイニングツール
Set
Code
Wait
+
Set
Code
Wait
22 ノードRanjan Dailata
人工知能
ワークフロー情報
難易度
上級
ノード数18
カテゴリー3
ノードタイプ10
難易度説明

上級者向け、16ノード以上の複雑なワークフロー

作成者
Ranjan Dailata

Ranjan Dailata

@ranjancse

A Professional based out of India specialized in handling AI-powered automations. Contact me at ranjancse@gmail.com

外部リンク
n8n.ioで表示

このワークフローを共有

カテゴリー

カテゴリー: 34