DNB企業検索と抽出:Bright DataとOpenAI 4o miniを使用
上級
これはProduct, AI, Marketing分野の自動化ワークフローで、18個のノードを含みます。主にSet, Function, McpClient, HttpRequest, ManualTriggerなどのノードを使用、AI技術を活用したスマート自動化を実現。 Bright Data そして OpenAI 4o mini に基づく DNB 社検索と抽出
前提条件
- •ターゲットAPIの認証情報が必要な場合あり
- •OpenAI API Key
使用ノード (18)
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "fw2n6WbzzOSBziD2",
"meta": {
"instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
"templateCredsSetupCompleted": true
},
"name": "DNB Company Search & Extract with Bright Data and Open AI 4o mini",
"tags": [
{
"id": "Kujft2FOjmOVQAmJ",
"name": "Engineering",
"createdAt": "2025-04-09T01:31:00.558Z",
"updatedAt": "2025-04-09T01:31:00.558Z"
},
{
"id": "ddPkw7Hg5dZhQu2w",
"name": "AI",
"createdAt": "2025-04-13T05:38:08.053Z",
"updatedAt": "2025-04-13T05:38:08.053Z"
}
],
"nodes": [
{
"id": "647ba3af-65c7-40ae-954d-1eacfd032057",
"name": "ワークフロー「テスト」クリック時",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-1140,
440
],
"parameters": {},
"typeVersion": 1
},
{
"id": "5ac1546f-0215-4ba4-996d-8b8298e8813b",
"name": "付箋ノート",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1140,
120
],
"parameters": {
"width": 400,
"height": 240,
"content": "## Note\n\nDeals with the DNB (https://www.dnb.com/) data extract using the Bright Data MCP Search and Markdown Web scraper\n\n**Please make sure to update the search query and the Webhook Notification URL. Test using https://webhook.site/**"
},
"typeVersion": 1
},
{
"id": "98264472-dec1-4930-8759-cd7765aebbb7",
"name": "入力フィールド設定",
"type": "n8n-nodes-base.set",
"position": [
-700,
440
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "88826650-2a6f-4d19-8a2f-27b039296a00",
"name": "webhook_notification_url",
"type": "string",
"value": "https://webhook.site/c9118da2-1c54-460f-a83a-e5131b7098db"
},
{
"id": "af7fb77a-7411-4f39-bd04-3bf8cc52a6f9",
"name": "search",
"type": "string",
"value": "dnb starbucks url"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "a888ec8a-9211-4196-8577-4a93c0ebda51",
"name": "Bright Data全ツール一覧",
"type": "n8n-nodes-mcp.mcpClient",
"position": [
-920,
440
],
"parameters": {},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"typeVersion": 1
},
{
"id": "f06c235a-7726-4580-8ea3-1f34a789b153",
"name": "検索エンジン用MCPクライアント",
"type": "n8n-nodes-mcp.mcpClient",
"position": [
-480,
440
],
"parameters": {
"toolName": "search_engine",
"operation": "executeTool",
"toolParameters": "={\n \"query\": \"{{ $json.search }}\",\n \"engine\": \"google\"\n} "
},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"typeVersion": 1
},
{
"id": "7462d4bf-eb0e-48e2-988f-64874a8e5c51",
"name": "DNB用Bright Data MCPクライアント",
"type": "n8n-nodes-mcp.mcpClient",
"notes": "Scrape a single webpage URL with advanced options for content extraction and get back the results in MarkDown language.",
"position": [
116,
440
],
"parameters": {
"toolName": "scrape_as_markdown",
"operation": "executeTool",
"toolParameters": "={\n \"url\": \"{{ $json.output.url }}\"\n} "
},
"credentials": {
"mcpClientApi": {
"id": "JtatFSfA2kkwctYa",
"name": "MCP Client (STDIO) account"
}
},
"notesInFlow": true,
"typeVersion": 1
},
{
"id": "1adbe55f-3649-45f3-825a-70ec021452dd",
"name": "LLMを用いたDNB URLデータ抽出",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
-260,
440
],
"parameters": {
"text": "=Extract the URLs for DNB {{ $json.result.content[0].text }}\n",
"batching": {},
"promptType": "define",
"hasOutputParser": true
},
"retryOnFail": true,
"typeVersion": 1.7
},
{
"id": "2fd7b177-2ac7-4cae-82af-47ea2cef08ed",
"name": "LLMを用いたDNB構造化データ抽出",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
336,
440
],
"parameters": {
"text": "=Extract the Company Profile from {{ $json.result.content[0].text }}\n\nOutput in a highly structured JSON format.\n",
"batching": {},
"promptType": "define",
"hasOutputParser": true
},
"retryOnFail": true,
"typeVersion": 1.7
},
{
"id": "7d2101c1-edc6-4f2b-8d2e-577bc07ac2ee",
"name": "構造化データ抽出用バイナリデータ作成",
"type": "n8n-nodes-base.function",
"position": [
712,
340
],
"parameters": {
"functionCode": "items[0].binary = {\n data: {\n data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n }\n};\nreturn items;"
},
"typeVersion": 1
},
{
"id": "937e7a23-32c8-4894-88c9-4c2d5b8fe274",
"name": "構造化コンテンツをディスクに書き込み",
"type": "n8n-nodes-base.readWriteFile",
"position": [
932,
340
],
"parameters": {
"options": {},
"fileName": "=d:\\DNB_Info.json",
"operation": "write"
},
"typeVersion": 1
},
{
"id": "0a40a4f0-6dba-4638-944d-192cd6e0c3a6",
"name": "構造化データのWebhook通知開始",
"type": "n8n-nodes-base.httpRequest",
"position": [
712,
540
],
"parameters": {
"url": "={{ $('Set input fields').item.json.webhook_notification_url }}",
"options": {},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "dnb_company_info",
"value": "={{ $json.output }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "de9da4f8-126d-48bd-a391-92f69a44a613",
"name": "付箋ノート2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-220,
240
],
"parameters": {
"width": 440,
"height": 120,
"content": "## Disclaimer\nThis template is only available on n8n self-hosted as it's making use of the community node for MCP Client."
},
"typeVersion": 1
},
{
"id": "534cc990-a9fe-4d8c-813c-19f864e92dd8",
"name": "付箋ノート6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-700,
120
],
"parameters": {
"color": 5,
"width": 440,
"height": 240,
"content": "## LLM Usages\n\nOpenAI 4o mini LLM is being utilized for the structured data extraction handling."
},
"typeVersion": 1
},
{
"id": "95d188e1-8e68-4843-a4d7-fd25d066b4aa",
"name": "付箋ノート5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1140,
-300
],
"parameters": {
"color": 7,
"width": 400,
"height": 400,
"content": "## Logo\n\n\n\n"
},
"typeVersion": 1
},
{
"id": "439f4da4-5055-4281-895f-38768bb62168",
"name": "URL用構造化出力パーサー",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
-80,
660
],
"parameters": {
"jsonSchemaExample": "{\n\t\"url\": \"url\"\n}"
},
"typeVersion": 1.2
},
{
"id": "82b4a20c-2046-4314-8179-6123f18ea97f",
"name": "構造化抽出用構造化出力パーサー",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
520,
660
],
"parameters": {
"schemaType": "manual",
"inputSchema": "{\n \"$schema\": \"http://json-schema.org/schema#\",\n \"title\": \"DNBCompanyProfile\",\n \"type\": \"object\",\n \"properties\": {\n \"companyName\": { \"type\": \"string\" },\n \"website\": { \"type\": \"string\", \"format\": \"uri\" },\n \"dnbHooversFreeTrial\": { \"type\": \"string\" },\n \"claimCompany\": { \"type\": \"string\" },\n\n \"overview\": {\n \"type\": \"object\",\n \"properties\": {\n \"doingBusinessAs\": { \"type\": \"string\" },\n \"companyDescription\": { \"type\": \"string\" },\n \"industry\": {\n \"type\": \"array\",\n \"items\": { \"type\": \"string\" }\n },\n \"address\": { \"type\": \"string\" },\n \"phone\": { \"type\": [\"string\", \"null\"] },\n \"employeesThisSite\": { \"type\": [\"string\", \"null\"] },\n \"employeesAllSites\": { \"type\": [\"string\", \"null\"] },\n \"revenue\": { \"type\": [\"string\", \"null\"] },\n \"yearStarted\": { \"type\": [\"integer\", \"null\"] },\n \"esgRanking\": { \"type\": [\"number\", \"null\"] },\n \"esgIndustryAverage\": { \"type\": [\"number\", \"null\"] }\n },\n \"required\": [\"companyDescription\", \"industry\", \"address\"]\n },\n\n \"contacts\": {\n \"type\": \"object\",\n \"properties\": {\n \"headline\": { \"type\": \"string\" },\n \"contact1\": { \"type\": \"string\" },\n \"contactLink\": { \"type\": \"string\" },\n \"dnbHooversLogo\": { \"type\": \"string\" }\n }\n },\n\n \"financialData\": {\n \"type\": \"object\",\n \"properties\": {\n \"description\": { \"type\": \"string\" },\n \"creditReportLink\": { \"type\": \"string\" }\n }\n },\n\n \"creditReports\": {\n \"type\": \"object\",\n \"properties\": {\n \"description\": { \"type\": \"string\" }\n }\n },\n\n \"faq\": {\n \"type\": \"object\",\n \"properties\": {\n \"location\": { \"type\": \"string\" },\n \"industry\": { \"type\": \"string\" },\n \"phoneNumber\": { \"type\": \"string\" },\n \"website\": { \"type\": \"string\" },\n \"employees\": { \"type\": \"string\" },\n \"keyPrincipal\": { \"type\": \"string\" },\n \"yearStarted\": { \"type\": \"string\" },\n \"sales\": { \"type\": \"string\" }\n }\n }\n },\n \"required\": [\"companyName\", \"overview\"]\n}\n"
},
"typeVersion": 1.2
},
{
"id": "a08383bf-b90b-4b82-9698-2f6c842749e2",
"name": "URLデータ抽出用OpenAIチャットモデル",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
-280,
660
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "vPKynKbDzJ5ZU4cU",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "5e577d2d-240a-4851-a1d7-04b66442049e",
"name": "DNB構造化データ抽出用OpenAIチャットモデル",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
320,
660
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "vPKynKbDzJ5ZU4cU",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "e8616327-2a5b-4815-bcff-ee154750f8cf",
"connections": {
"98264472-dec1-4930-8759-cd7765aebbb7": {
"main": [
[
{
"node": "f06c235a-7726-4580-8ea3-1f34a789b153",
"type": "main",
"index": 0
}
]
]
},
"f06c235a-7726-4580-8ea3-1f34a789b153": {
"main": [
[
{
"node": "1adbe55f-3649-45f3-825a-70ec021452dd",
"type": "main",
"index": 0
}
]
]
},
"7462d4bf-eb0e-48e2-988f-64874a8e5c51": {
"main": [
[
{
"node": "2fd7b177-2ac7-4cae-82af-47ea2cef08ed",
"type": "main",
"index": 0
}
]
]
},
"1adbe55f-3649-45f3-825a-70ec021452dd": {
"main": [
[
{
"node": "7462d4bf-eb0e-48e2-988f-64874a8e5c51",
"type": "main",
"index": 0
}
]
]
},
"a888ec8a-9211-4196-8577-4a93c0ebda51": {
"main": [
[
{
"node": "98264472-dec1-4930-8759-cd7765aebbb7",
"type": "main",
"index": 0
}
]
]
},
"439f4da4-5055-4281-895f-38768bb62168": {
"ai_outputParser": [
[
{
"node": "1adbe55f-3649-45f3-825a-70ec021452dd",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"647ba3af-65c7-40ae-954d-1eacfd032057": {
"main": [
[
{
"node": "a888ec8a-9211-4196-8577-4a93c0ebda51",
"type": "main",
"index": 0
}
]
]
},
"2fd7b177-2ac7-4cae-82af-47ea2cef08ed": {
"main": [
[
{
"node": "7d2101c1-edc6-4f2b-8d2e-577bc07ac2ee",
"type": "main",
"index": 0
},
{
"node": "0a40a4f0-6dba-4638-944d-192cd6e0c3a6",
"type": "main",
"index": 0
}
]
]
},
"a08383bf-b90b-4b82-9698-2f6c842749e2": {
"ai_languageModel": [
[
{
"node": "1adbe55f-3649-45f3-825a-70ec021452dd",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"82b4a20c-2046-4314-8179-6123f18ea97f": {
"ai_outputParser": [
[
{
"node": "2fd7b177-2ac7-4cae-82af-47ea2cef08ed",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"7d2101c1-edc6-4f2b-8d2e-577bc07ac2ee": {
"main": [
[
{
"node": "937e7a23-32c8-4894-88c9-4c2d5b8fe274",
"type": "main",
"index": 0
}
]
]
},
"5e577d2d-240a-4851-a1d7-04b66442049e": {
"ai_languageModel": [
[
{
"node": "2fd7b177-2ac7-4cae-82af-47ea2cef08ed",
"type": "ai_languageModel",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - プロダクト, 人工知能, マーケティング
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
AIアゲント駆動のProduct Huntデータ抽出と検索(Bright DataとGoogle Geminiを使用)
Bright Data MCPとGoogle Gemini AIを使ってProduct Huntデータをクロールして検索
Set
Function
Mcp Client
+
Set
Function
Mcp Client
21 ノードRanjan Dailata
人工知能
Brave検索による構造化データ抽出(Bright Data MCP + Google Gemini)
Bright Data MCPとGoogle Geminiを使用してBrave検索から構造化されたデータを抽出
Set
Switch
Function
+
Set
Switch
Function
24 ノードRanjan Dailata
人工知能
Bright Data を使用して Google Gemini で Etsy データをスクレイピングし自動化
Etsy データマイニングの自動化を実現:Bright Data によるスクレピング、Google Gemini
Set
Function
Split Out
+
Set
Function
Split Out
19 ノードRanjan Dailata
プロダクト
Bright Data と OpenAI 4o mini を使用した自動履歴書求人情報マッチングエンジン
Bright Data MCP と OpenAI 4o mini を使った自動履歴書職業マッチングエンジン
Set
Function
Split Out
+
Set
Function
Split Out
22 ノードRanjan Dailata
人事
Bright DataとOpenAIを使用したCrunchbase B2Bリード発見パイプライン
Bright Data、GPT-4o、Google Sheetsを使ってCrunchbaseからB2Bリードを抽出・要約する
Set
Function
Http Request
+
Set
Function
Http Request
21 ノードRanjan Dailata
営業
Bright Data MCPとGoogle Geminiを使用した法の事例研究抽出ツール、データマイニングツール
Bright Data MCPとGoogle Geminiを使用した法のケーススタディ抽出データマイニングツール
Set
Code
Wait
+
Set
Code
Wait
22 ノードRanjan Dailata
人工知能
ワークフロー情報
難易度
上級
ノード数18
カテゴリー3
ノードタイプ10
作成者
Ranjan Dailata
@ranjancseA Professional based out of India specialized in handling AI-powered automations. Contact me at ranjancse@gmail.com
外部リンク
n8n.ioで表示 →
このワークフローを共有