Utiliser GPT-4 et PDF Vector pour générer des résumés de documents de recherche multi-formats
Ceci est unAI Summarization, Multimodal AIworkflow d'automatisation du domainecontenant 9 nœuds.Utilise principalement des nœuds comme Code, OpenAi, Webhook, PdfVector, RespondToWebhook. Générer des résumés multi-formats de recherches à partir de PDF avec GPT-4 et PDF Vector
- •Clé API OpenAI
- •Point de terminaison HTTP Webhook (généré automatiquement par n8n)
Nœuds utilisés (9)
Catégorie
{
"meta": {
"instanceId": "placeholder"
},
"nodes": [
{
"id": "info-note",
"name": "Types de résumés",
"type": "n8n-nodes-base.stickyNote",
"position": [
250,
150
],
"parameters": {
"content": "## Paper Summarizer\n\nGenerates multiple summary types:\n- Executive (1 page)\n- Technical (detailed)\n- Lay (plain language)\n- Social (tweet-sized)"
},
"typeVersion": 1
},
{
"id": "webhook-trigger",
"name": "Webhook - URL du document",
"type": "n8n-nodes-base.webhook",
"position": [
450,
300
],
"parameters": {
"path": "summarize",
"options": {},
"responseMode": "onReceived"
},
"typeVersion": 1
},
{
"id": "pdfvector-parse",
"name": "PDF Vector - Analyser le document",
"type": "n8n-nodes-pdfvector.pdfVector",
"position": [
650,
300
],
"parameters": {
"useLlm": "always",
"resource": "document",
"operation": "parse",
"documentUrl": "={{ $json.paperUrl }}"
},
"typeVersion": 1
},
{
"id": "exec-summary",
"name": "Résumé exécutif",
"type": "n8n-nodes-base.openAi",
"position": [
850,
250
],
"parameters": {
"model": "gpt-4",
"messages": {
"values": [
{
"content": "Create an executive summary (max 500 words) of this research paper:\n\n{{ $json.content }}\n\nInclude:\n1. Research question and motivation\n2. Methodology overview\n3. Key findings (3-5 points)\n4. Practical implications\n5. Limitations and future work"
}
]
}
},
"typeVersion": 1
},
{
"id": "tech-summary",
"name": "Résumé technique",
"type": "n8n-nodes-base.openAi",
"position": [
850,
350
],
"parameters": {
"model": "gpt-4",
"messages": {
"values": [
{
"content": "Create a detailed technical summary of this research paper:\n\n{{ $json.content }}\n\nInclude:\n1. Research objectives and hypotheses\n2. Detailed methodology\n3. Data analysis approach\n4. Complete results with statistics\n5. Technical contributions\n6. Comparison with prior work\n7. Future research directions"
}
]
}
},
"typeVersion": 1
},
{
"id": "lay-summary",
"name": "Résumé vulgarisé",
"type": "n8n-nodes-base.openAi",
"position": [
850,
450
],
"parameters": {
"model": "gpt-3.5-turbo",
"messages": {
"values": [
{
"content": "Explain this research paper in simple terms that anyone can understand (max 300 words):\n\n{{ $json.content }}\n\nAvoid jargon and technical terms. Use analogies where helpful."
}
]
}
},
"typeVersion": 1
},
{
"id": "tweet-summary",
"name": "Résumé pour Tweet",
"type": "n8n-nodes-base.openAi",
"position": [
850,
550
],
"parameters": {
"model": "gpt-3.5-turbo",
"messages": {
"values": [
{
"content": "Create a tweet (max 280 characters) summarizing the key finding of this paper:\n\n{{ $json.content }}\n\nMake it engaging and include relevant hashtags."
}
]
}
},
"typeVersion": 1
},
{
"id": "combine-summaries",
"name": "Combiner tous les résumés",
"type": "n8n-nodes-base.code",
"position": [
1050,
400
],
"parameters": {
"functionCode": "return {\n paperUrl: $node['Webhook - Paper URL'].json.paperUrl,\n summaries: {\n executive: $node['Executive Summary'].json.content,\n technical: $node['Technical Summary'].json.content,\n lay: $node['Lay Summary'].json.content,\n tweet: $node['Tweet Summary'].json.content\n },\n generatedAt: new Date().toISOString()\n};"
},
"typeVersion": 1
},
{
"id": "respond-webhook",
"name": "Retourner les résumés",
"type": "n8n-nodes-base.respondToWebhook",
"position": [
1250,
400
],
"parameters": {
"options": {}
},
"typeVersion": 1
}
],
"connections": {
"lay-summary": {
"main": [
[
{
"node": "combine-summaries",
"type": "main",
"index": 0
}
]
]
},
"tweet-summary": {
"main": [
[
{
"node": "combine-summaries",
"type": "main",
"index": 0
}
]
]
},
"exec-summary": {
"main": [
[
{
"node": "combine-summaries",
"type": "main",
"index": 0
}
]
]
},
"tech-summary": {
"main": [
[
{
"node": "combine-summaries",
"type": "main",
"index": 0
}
]
]
},
"webhook-trigger": {
"main": [
[
{
"node": "pdfvector-parse",
"type": "main",
"index": 0
}
]
]
},
"combine-summaries": {
"main": [
[
{
"node": "respond-webhook",
"type": "main",
"index": 0
}
]
]
},
"pdfvector-parse": {
"main": [
[
{
"node": "exec-summary",
"type": "main",
"index": 0
},
{
"node": "tech-summary",
"type": "main",
"index": 0
},
{
"node": "lay-summary",
"type": "main",
"index": 0
},
{
"node": "tweet-summary",
"type": "main",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Intermédiaire - Résumé IA, IA Multimodale
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
PDF Vector
@pdfvectorA fully featured PDF APIs for developers - Parse any PDF or Word document, extract structured data, and access millions of academic papers - all through simple APIs.
Partager ce workflow