Revue automatique de littérature académique avec GPT-4 et recherche multi-base de données

Intermédiaire

Ceci est unDocument Extraction, AI RAG, Multimodal AIworkflow d'automatisation du domainecontenant 13 nœuds.Utilise principalement des nœuds comme If, Set, Code, OpenAi, SplitInBatches. Utiliser GPT-4 et la recherche multi-base de données pour automatiser la synthèse de la littérature académique

Prérequis
  • Clé API OpenAI
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "meta": {
    "instanceId": "placeholder"
  },
  "nodes": [
    {
      "id": "overview-note",
      "name": "Aperçu de la Revue",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        50,
        50
      ],
      "parameters": {
        "color": 5,
        "width": 350,
        "height": 180,
        "content": "## 📖 Literature Review Generator\n\nSystematic review automation:\n• **Searches** multiple databases\n• **Screens** with inclusion criteria\n• **Assesses** study quality\n• **Synthesizes** findings\n• **Generates** PRISMA-compliant review"
      },
      "typeVersion": 1
    },
    {
      "id": "search-note",
      "name": "Recherche en Base de Données",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        450,
        450
      ],
      "parameters": {
        "width": 260,
        "height": 160,
        "content": "## 🔍 Search Strategy\n\nDatabases searched:\n• PubMed/MEDLINE\n• Web of Science\n• Cochrane Library\n• Google Scholar\n\n💡 De-duplicates results"
      },
      "typeVersion": 1
    },
    {
      "id": "quality-note",
      "name": "Qualité de l'Étude",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        850,
        450
      ],
      "parameters": {
        "width": 260,
        "height": 150,
        "content": "## 📊 Quality Assessment\n\n**Evaluates:**\n• Study design\n• Sample size\n• Risk of bias\n• Evidence level\n\n✅ Cochrane standards"
      },
      "typeVersion": 1
    },
    {
      "id": "output-note",
      "name": "Revue Finale",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1150,
        450
      ],
      "parameters": {
        "color": 6,
        "width": 260,
        "height": 180,
        "content": "## 📝 Review Output\n\nGenerates:\n• Narrative synthesis\n• Evidence tables\n• PRISMA diagram\n• Forest plots\n• Bibliography\n\n🎯 Publication ready!"
      },
      "typeVersion": 1
    },
    {
      "id": "set-parameters",
      "name": "Définir les Paramètres de Recherche",
      "type": "n8n-nodes-base.set",
      "notes": "Configure literature review parameters",
      "position": [
        250,
        300
      ],
      "parameters": {
        "values": {
          "number": [
            {
              "name": "maxPapers",
              "value": 20
            }
          ],
          "string": [
            {
              "name": "topic",
              "value": "machine learning in healthcare"
            },
            {
              "name": "yearFrom",
              "value": "2020"
            },
            {
              "name": "yearTo",
              "value": "2024"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "pdfvector-search",
      "name": "PDF Vector - Rechercher des Articles",
      "type": "n8n-nodes-pdfvector.pdfVector",
      "notes": "Search academic databases",
      "position": [
        450,
        300
      ],
      "parameters": {
        "limit": 50,
        "query": "={{ $json.topic }}",
        "yearTo": "={{ $json.yearTo }}",
        "resource": "academic",
        "yearFrom": "={{ $json.yearFrom }}",
        "operation": "search",
        "providers": [
          "pubmed",
          "semantic-scholar",
          "arxiv"
        ],
        "additionalFields": {
          "fields": [
            "title",
            "abstract",
            "authors",
            "year",
            "doi",
            "pdfURL",
            "totalCitations"
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "rank-papers",
      "name": "Classer et Sélectionner les Articles",
      "type": "n8n-nodes-base.code",
      "notes": "Rank papers by relevance",
      "position": [
        650,
        300
      ],
      "parameters": {
        "jsCode": "// Rank papers by relevance and citations\nconst papers = $input.all().map(item => item.json);\nconst searchTopic = $node['Set Search Parameters'].json.topic;\n\n// Calculate relevance scores\nconst scoredPapers = papers.map(paper => {\n  let score = 0;\n  \n  // Citation score (normalized)\n  const maxCitations = Math.max(...papers.map(p => p.totalCitations || 0));\n  const citationScore = (paper.totalCitations || 0) / (maxCitations || 1) * 40;\n  score += citationScore;\n  \n  // Recency score\n  const paperYear = parseInt(paper.year);\n  const currentYear = new Date().getFullYear();\n  const recencyScore = Math.max(0, 20 - (currentYear - paperYear) * 2);\n  score += recencyScore;\n  \n  // Title relevance\n  const topicWords = searchTopic.toLowerCase().split(' ');\n  const titleWords = paper.title.toLowerCase();\n  const titleMatches = topicWords.filter(word => titleWords.includes(word)).length;\n  score += titleMatches * 10;\n  \n  // Abstract relevance\n  if (paper.abstract) {\n    const abstractWords = paper.abstract.toLowerCase();\n    const abstractMatches = topicWords.filter(word => abstractWords.includes(word)).length;\n    score += abstractMatches * 5;\n  }\n  \n  return {\n    ...paper,\n    relevanceScore: Math.round(score),\n    rankingDetails: {\n      citationScore: Math.round(citationScore),\n      recencyScore,\n      titleRelevance: titleMatches,\n      abstractRelevance: abstractMatches || 0\n    }\n  };\n});\n\n// Sort by score and limit to top N\nconst maxPapers = $node['Set Search Parameters'].json.maxPapers;\nconst topPapers = scoredPapers\n  .sort((a, b) => b.relevanceScore - a.relevanceScore)\n  .slice(0, maxPapers);\n\nreturn topPapers.map(paper => ({ json: paper }));"
      },
      "typeVersion": 2
    },
    {
      "id": "split-batch",
      "name": "Traiter un par un",
      "type": "n8n-nodes-base.splitInBatches",
      "notes": "Process papers individually",
      "position": [
        850,
        300
      ],
      "parameters": {
        "options": {},
        "batchSize": 1
      },
      "typeVersion": 1
    },
    {
      "id": "has-pdf",
      "name": "Possède un PDF ?",
      "type": "n8n-nodes-base.if",
      "position": [
        1050,
        300
      ],
      "parameters": {
        "conditions": {
          "string": [
            {
              "value1": "={{ $json.pdfURL }}",
              "operation": "isNotEmpty"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "pdfvector-parse",
      "name": "PDF Vector - Analyser l'Article",
      "type": "n8n-nodes-pdfvector.pdfVector",
      "notes": "Parse paper content from PDF or image",
      "position": [
        1250,
        250
      ],
      "parameters": {
        "url": "={{ $json.pdfURL }}",
        "useLLM": "auto",
        "resource": "document",
        "inputType": "url",
        "operation": "parse"
      },
      "typeVersion": 1
    },
    {
      "id": "analyze-paper",
      "name": "Analyser le Contenu de l'Article",
      "type": "n8n-nodes-base.openAi",
      "notes": "Generate review entry",
      "position": [
        1450,
        300
      ],
      "parameters": {
        "model": "gpt-4",
        "messages": {
          "values": [
            {
              "content": "Create a literature review entry for this paper in the context of '{{ $node['Set Search Parameters'].json.topic }}':\n\nTitle: {{ $json.title }}\nAuthors: {{ $json.authors }}\nYear: {{ $json.year }}\nCitations: {{ $json.totalCitations }}\n\nContent: {{ $json.content || $json.abstract }}\n\nProvide:\n1. A 3-4 sentence summary of the paper's contribution\n2. Key methodology used\n3. Main findings (2-3 bullet points)\n4. How it relates to the topic\n5. Limitations mentioned\n6. Suggested citation in APA format"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "store-entry",
      "name": "Stocker l'Entrée de Revue",
      "type": "n8n-nodes-base.set",
      "notes": "Save processed entry",
      "position": [
        1650,
        300
      ],
      "parameters": {
        "values": {
          "string": [
            {
              "name": "reviewEntry",
              "value": "={{ $json.choices[0].message.content }}"
            },
            {
              "name": "paperTitle",
              "value": "={{ $node['Has PDF?'].json.title }}"
            },
            {
              "name": "paperDoi",
              "value": "={{ $node['Has PDF?'].json.doi }}"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "compile-review",
      "name": "Compiler la Revue de Littérature",
      "type": "n8n-nodes-base.code",
      "notes": "Generate final document",
      "position": [
        1850,
        300
      ],
      "parameters": {
        "functionCode": "// Wait for all papers to be processed\nconst allEntries = $input.all().map(item => item.json);\n\n// Group papers by themes/methodologies\nconst themes = {\n  'Machine Learning Models': [],\n  'Clinical Applications': [],\n  'Data Processing': [],\n  'Evaluation Studies': [],\n  'Review Papers': [],\n  'Other': []\n};\n\n// Categorize papers (simplified - in production use NLP)\nallEntries.forEach(entry => {\n  const review = entry.reviewEntry.toLowerCase();\n  if (review.includes('neural network') || review.includes('deep learning')) {\n    themes['Machine Learning Models'].push(entry);\n  } else if (review.includes('clinical') || review.includes('patient')) {\n    themes['Clinical Applications'].push(entry);\n  } else if (review.includes('preprocessing') || review.includes('data processing')) {\n    themes['Data Processing'].push(entry);\n  } else if (review.includes('evaluation') || review.includes('comparison')) {\n    themes['Evaluation Studies'].push(entry);\n  } else if (review.includes('review') || review.includes('survey')) {\n    themes['Review Papers'].push(entry);\n  } else {\n    themes['Other'].push(entry);\n  }\n});\n\n// Generate literature review document\nlet reviewDocument = `# Literature Review: ${$node['Set Search Parameters'].json.topic}\\n\\n`;\nreviewDocument += `Generated on: ${new Date().toLocaleDateString()}\\n\\n`;\nreviewDocument += `## Summary\\n\\n`;\nreviewDocument += `This review analyzes ${allEntries.length} papers published between ${$node['Set Search Parameters'].json.yearFrom} and ${$node['Set Search Parameters'].json.yearTo} on the topic of ${$node['Set Search Parameters'].json.topic}.\\n\\n`;\n\n// Add themed sections\nObject.entries(themes).forEach(([theme, papers]) => {\n  if (papers.length > 0) {\n    reviewDocument += `## ${theme} (${papers.length} papers)\\n\\n`;\n    papers.forEach(paper => {\n      reviewDocument += `### ${paper.paperTitle}\\n\\n`;\n      reviewDocument += paper.reviewEntry + '\\n\\n';\n    });\n  }\n});\n\n// Add bibliography\nreviewDocument += `## Bibliography\\n\\n`;\nallEntries.forEach((entry, index) => {\n  const citation = entry.reviewEntry.split('Suggested citation:')[1] || 'Citation not available';\n  reviewDocument += `${index + 1}. ${citation.trim()}\\n\\n`;\n});\n\nreturn [{\n  json: {\n    reviewDocument,\n    totalPapers: allEntries.length,\n    themes: Object.entries(themes).map(([theme, papers]) => ({\n      theme,\n      count: papers.length\n    })),\n    generatedAt: new Date().toISOString()\n  }\n}];"
      },
      "typeVersion": 2
    }
  ],
  "connections": {
    "has-pdf": {
      "main": [
        [
          {
            "node": "pdfvector-parse",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "analyze-paper",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "split-batch": {
      "main": [
        [
          {
            "node": "has-pdf",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "store-entry": {
      "main": [
        [
          {
            "node": "split-batch",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "rank-papers": {
      "main": [
        [
          {
            "node": "split-batch",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "analyze-paper": {
      "main": [
        [
          {
            "node": "store-entry",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "set-parameters": {
      "main": [
        [
          {
            "node": "pdfvector-search",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "pdfvector-parse": {
      "main": [
        [
          {
            "node": "analyze-paper",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "pdfvector-search": {
      "main": [
        [
          {
            "node": "rank-papers",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Intermédiaire - Extraction de documents, RAG IA, IA Multimodale

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Workflows recommandés

Recherche académique sur cinq bases de données, avec des vecteurs PDF et plusieurs exportations
Recherche académique sur cinq bases de données avec vecteurs PDF et export multiple
Set
Code
Pdf Vector
+
Set
Code
Pdf Vector
9 NœudsPDF Vector
RAG IA
Construction d'un graphe de connaissances académique avec des vecteurs PDF, GPT-4 et Neo4j
Construire un graphe de connaissances académique à partir d'articles de recherche avec PDF vector, GPT-4 et Neo4j
Code
Neo4j
Open Ai
+
Code
Neo4j
Open Ai
10 NœudsPDF Vector
RAG IA
Construction d'une API de réponse aux questions de documents avec des vecteurs PDF et des Webhooks
Construire une API de questions-réponses sur documents avec PDF vector et Webhooks
If
Code
Webhook
+
If
Code
Webhook
11 NœudsPDF Vector
Wiki interne
Extraction de données cliniques à partir de documents médicaux via PDF Vector et conformité HIPAA
Extraire des données cliniques de documents médicaux avec PDF Vector et conformité HIPAA
If
Code
Postgres
+
If
Code
Postgres
9 NœudsPDF Vector
Extraction de documents
Extraction de données à partir de documents via GPT-4, PDFVector et export PostgreSQL
Exporter les données extraites de documents avec GPT-4, PDFVector et PostgreSQL
Code
Open Ai
Switch
+
Code
Open Ai
Switch
9 NœudsPDF Vector
Extraction de documents
Surveillance automatisée des publications académiques, avec des vecteurs PDF, GPT-3.5 et des alertes Slack
Automatisation de la surveillance d'articles académiques, avec des vecteurs PDF, GPT-3.5 et des notifications Slack
Set
Code
Slack
+
Set
Code
Slack
10 NœudsPDF Vector
Productivité personnelle
Informations sur le workflow
Niveau de difficulté
Intermédiaire
Nombre de nœuds13
Catégorie3
Types de nœuds7
Description de la difficulté

Adapté aux utilisateurs expérimentés, avec des workflows de complexité moyenne contenant 6-15 nœuds

Auteur
PDF Vector

PDF Vector

@pdfvector

A fully featured PDF APIs for developers - Parse any PDF or Word document, extract structured data, and access millions of academic papers - all through simple APIs.

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34