Chatbot RAG Telegram avec documents PDF et sauvegarde Google Drive
Ceci est unInternal Wiki, AI RAGworkflow d'automatisation du domainecontenant 24 nœuds.Utilise principalement des nœuds comme If, Code, Telegram, FormTrigger, GoogleDrive. Construire un chatbot de récupération sur Telegram avec OpenAI et les sauvegardes PDF de Google Drive
- •Token Bot Telegram
- •Informations d'identification Google Drive API
- •Clé API OpenAI
Nœuds utilisés (24)
Catégorie
{
"id": "bsT84L413PRtrNtZ",
"meta": {
"instanceId": "4a2e6764ba7a6bc9890d9225f4b21d570ce88fc9bd57549c89057fcee58fed0f",
"templateId": "5010",
"templateCredsSetupCompleted": true
},
"name": "Telegram RAG Chatbot with PDF Document & Google Drive Backup",
"tags": [
{
"id": "ow6eIe95VK6fRkyw",
"name": "Chatbot",
"createdAt": "2025-08-05T06:23:11.231Z",
"updatedAt": "2025-08-05T06:23:11.231Z"
},
{
"id": "JFZdpFVd2h3ZDZ7n",
"name": "RAG",
"createdAt": "2025-08-05T06:23:26.538Z",
"updatedAt": "2025-08-05T06:23:26.538Z"
},
{
"id": "84SlSTthTSHRbFGM",
"name": "Telegram",
"createdAt": "2025-08-05T06:23:21.764Z",
"updatedAt": "2025-08-05T06:23:21.764Z"
}
],
"nodes": [
{
"id": "26d63e24-2592-41f9-9b4b-edab81e99f21",
"name": "Embeddings OpenAI",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
1760,
720
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "PPSwAKeLQYgAPobT",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "3a69c8a7-bf95-4de2-84b0-ae2cc3d2e4e7",
"name": "Chargeur de données par défaut",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
1232,
1112
],
"parameters": {
"options": {},
"dataType": "binary"
},
"typeVersion": 1.1
},
{
"id": "0f4185ea-d7a9-44a9-a824-98f9dc2c2a5d",
"name": "Insérer des données dans le stockage",
"type": "@n8n/n8n-nodes-langchain.vectorStoreInMemory",
"position": [
1136,
888
],
"parameters": {
"mode": "insert",
"memoryKey": {
"__rl": true,
"mode": "list",
"value": "vector_store_key",
"cachedResultName": "vector_store_key"
}
},
"typeVersion": 1.2
},
{
"id": "ce86b41b-7e1b-458f-ab13-d6b187854ae8",
"name": "Outil de requête de données",
"type": "@n8n/n8n-nodes-langchain.vectorStoreInMemory",
"position": [
1664,
512
],
"parameters": {
"mode": "retrieve-as-tool",
"toolName": "knowledge_base",
"memoryKey": {
"__rl": true,
"mode": "list",
"value": "vector_store_key"
},
"toolDescription": "Use this knowledge base to answer questions from the user"
},
"typeVersion": 1.2
},
{
"id": "d43cf585-4192-4f53-9532-4677923289ba",
"name": "Modèle de chat OpenAI",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1536,
512
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "PPSwAKeLQYgAPobT",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "8d4c68cf-64d1-4b3a-bb19-2f003303c1df",
"name": "Note adhésive 3",
"type": "n8n-nodes-base.stickyNote",
"position": [
1920,
688
],
"parameters": {
"color": 4,
"width": 320,
"height": 224,
"content": "### Embeddings\n\nThe Insert and Retrieve operation use the same embedding node.\n\nThis is to ensure that they are using the **exact same embeddings and settings**.\n\nDifferent embeddings might not work at all, or have unintended consequences.\n"
},
"typeVersion": 1
},
{
"id": "d4227342-0a19-420e-b088-2e37186ad074",
"name": "Déclencheur Telegram",
"type": "n8n-nodes-base.telegramTrigger",
"position": [
912,
696
],
"webhookId": "aac0aa6a-c86e-4b4d-8f81-daacfd20f2c8",
"parameters": {
"updates": [
"message"
],
"additionalFields": {}
},
"credentials": {
"telegramApi": {
"id": "paNoPvnV5Wzt4Lhv",
"name": "Telegram account"
}
},
"typeVersion": 1.2
},
{
"id": "7470655a-650a-48ca-98e0-b248cf99d18e",
"name": "Est-ce un message texte ?",
"type": "n8n-nodes-base.if",
"position": [
1224,
696
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "2439fbb6-c093-4b33-aabd-db08ebfd53b2",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "fda67b3b-9844-40e4-aa53-252d2e36e667",
"name": "Envoyer la réponse à l'utilisateur",
"type": "n8n-nodes-base.telegram",
"position": [
2064,
496
],
"webhookId": "bead9b9b-6410-4fe7-a36c-05bd069e3a02",
"parameters": {
"text": "={{ $json.output }}",
"chatId": "={{ $('Telegram Trigger').item.json.message.chat.id }}",
"additionalFields": {}
},
"credentials": {
"telegramApi": {
"id": "paNoPvnV5Wzt4Lhv",
"name": "Telegram account"
}
},
"typeVersion": 1.2
},
{
"id": "62ae0117-0d2c-47dd-a772-7c4cd70885ec",
"name": "Type de message non pris en charge",
"type": "n8n-nodes-base.telegram",
"position": [
1688,
896
],
"webhookId": "724418e9-e7ef-4aa2-8722-028683cadb2f",
"parameters": {
"text": "Sorry, I can’t read files or images right now. Just send me your question about uploaded document, and I’ll help you answer it!",
"chatId": "={{ $('Telegram Trigger').item.json.message.chat.id }}",
"additionalFields": {}
},
"credentials": {
"telegramApi": {
"id": "paNoPvnV5Wzt4Lhv",
"name": "Telegram account"
}
},
"typeVersion": 1.2
},
{
"id": "0039537b-558c-4fe8-9716-f8aa13676f4a",
"name": "Agent de requête de documents Telegram",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1552,
288
],
"parameters": {
"text": "={{ $json.message.text }}",
"options": {
"systemMessage": "The output should not exceed 3000 characters after entities parsing."
},
"promptType": "define"
},
"typeVersion": 2
},
{
"id": "0608a9d7-db7b-4a18-b8fb-26b936da919a",
"name": "Note adhésive 6",
"type": "n8n-nodes-base.stickyNote",
"position": [
1104,
512
],
"parameters": {
"width": 272,
"height": 144,
"content": "### 2. Is Text Message? \n**Description**: Checks whether the incoming Telegram message is a text message. If not, the workflow routes to an \"unsupported message type\" handler."
},
"typeVersion": 1
},
{
"id": "40c8b84f-ed8a-4fdc-b04c-d778a2fdea0e",
"name": "Note adhésive 5",
"type": "n8n-nodes-base.stickyNote",
"position": [
544,
688
],
"parameters": {
"width": 304,
"height": 128,
"content": "### 1. 📩 Telegram Trigger \n**Description**: Listens for incoming messages from the user via the connected Telegram bot. This is the entry point of the workflow."
},
"typeVersion": 1
},
{
"id": "91077637-5e75-4bb2-8419-235420bc5a96",
"name": "Code",
"type": "n8n-nodes-base.code",
"position": [
1224,
1288
],
"parameters": {
"jsCode": "const data = $input.item.json;\nconst binaryData = $input.item.binary;\n\nlet output = [];\n\nObject.keys(binaryData)\n .filter(label => label.startsWith(\"CV_\"))\n .forEach(label => {\n output.push({\n json: data,\n binary: { data: binaryData[label] }\n });\n });\n\nreturn output;"
},
"typeVersion": 2
},
{
"id": "83ed351e-90e8-458f-a01b-73001ef1800f",
"name": "Téléversez votre document PDF ici",
"type": "n8n-nodes-base.formTrigger",
"position": [
912,
1140
],
"webhookId": "82848bc4-5ea2-4e5a-8bb6-3c09b94a8c5d",
"parameters": {
"options": {},
"formTitle": "Upload your data to test RAG",
"formFields": {
"values": [
{
"fieldType": "file",
"fieldLabel": "Upload your file(s)",
"requiredField": true,
"acceptFileTypes": ".pdf"
}
]
}
},
"typeVersion": 2.2
},
{
"id": "79a7f8b5-7af2-479c-883c-a4e02ce4bee8",
"name": "Sauvegarder le(s) document(s) sur Google Drive",
"type": "n8n-nodes-base.googleDrive",
"position": [
1688,
1288
],
"parameters": {
"name": "=document-{{ $now.toFormat(\"yyyyLLdd-HHmmss\") }}-{{$binary.data.fileName}}",
"driveId": {
"__rl": true,
"mode": "list",
"value": "My Drive",
"cachedResultUrl": "https://drive.google.com/drive/my-drive",
"cachedResultName": "My Drive"
},
"options": {},
"folderId": {
"__rl": true,
"mode": "list",
"value": "1ObNNVJFR2vcKqP8p-ZnX_eaZy4gBHgha",
"cachedResultUrl": "https://drive.google.com/drive/folders/1ObNNVJFR2vcKqP8p-ZnX_eaZy4gBHgha",
"cachedResultName": "SmartIT"
}
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "fC471es5gk5Mm900",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "c8f73ac1-eb95-4fa0-a1d8-8b6f5befe885",
"name": "Note adhésive",
"type": "n8n-nodes-base.stickyNote",
"position": [
-752,
-96
],
"parameters": {
"color": 7,
"width": 1264,
"height": 1856,
"content": "# 📚 Telegram RAG Chatbot with PDF Document & Google Drive Backup\n- An upgraded Retrieval-Augmented Generation (RAG) chatbot built in **n8n** that lets users ask questions via Telegram and receive accurate answers from uploaded PDFs. It embeds documents using OpenAI and backs them up to Google Drive.\n\n## 👤 Who’s it for\n\nPerfect for:\n- Knowledge workers who want instant access to private documents\n- Support teams needing searchable SOPs and guides\n- Educators enabling course material Q&A for students\n- Individuals automating personal document search + cloud backup\n\n## ⚙️ How it works / What it does\n\n### 💬 Telegram Chat Handling\n1. **User sends a message** \n Triggered by the Telegram bot, the workflow checks if the message is text.\n\n2. **Text message → OpenAI RAG Agent** \n If the message is text, it's passed to a GPT-powered document agent. \n This agent:\n - Retrieves relevant info from embedded documents using semantic search\n - Returns a context-aware answer to the user\n\n3. **Send answer back** \n The bot sends the generated response back to the Telegram user.\n\n4. **Non-text input fallback** \n If the message is not text, the bot replies with a polite unsupported message.\n\n### 📄 PDF Upload and Embedding\n1. **User uploads PDFs manually** \n A manual trigger starts the embedding flow.\n\n2. **Default Data Loader** \n Reads and chunks the PDF(s) into text segments.\n\n3. **Insert to Vector Store (Embedding)** \n Text chunks are embedded using OpenAI and saved for retrieval.\n\n4. **Backup to Google Drive** \n The original PDF is uploaded to Google Drive for safekeeping.\n\n## 🛠️ How to set up\n\n1. **Telegram Bot**\n - Create via [BotFather](https://t.me/botfather)\n - Connect it to the Telegram Trigger node\n\n2. **OpenAI**\n - Use your OpenAI API key\n - Connect the Embeddings and Chat Model nodes (GPT-3.5/4)\n - Ensure both embedding and querying use the same Embedding node\n\n3. **Google Drive**\n - Set up credentials in n8n for your Google account\n - Connect the “Backup to Google Drive” node\n\n4. **PDF Ingestion**\n - Use the “Upload your PDF here” trigger\n - Connect it to the loader, embedder, and backup flow\n\n## ✅ Requirements\n\n- Telegram bot token\n- OpenAI API key (GPT + Embeddings)\n- n8n instance (self-hosted or cloud)\n- Google Drive integration\n- PDF files to upload\n\n## 🧩 How to customize the workflow\n\n| Feature | How to Customize |\n|-------------------------------|-------------------------------------------------------------------|\n| Auto-ingest from folders | Add Google Drive/Dropbox watchers for new PDFs |\n| Add file upload via Telegram | Extend Telegram bot to receive PDFs and run the embedding flow |\n| Track user questions | Log Telegram usernames and questions to a database |\n| Summarize documents | Add summarization step on upload |\n| Add Markdown or HTML support | Format replies for better Telegram rendering |\n\nBuilt with 💬 Telegram + 📄 PDF + 🧠 OpenAI Embeddings + ☁️ Google Drive + ⚡ n8n"
},
"typeVersion": 1
},
{
"id": "8ecf58dd-5beb-4f78-bd09-1238f25c623a",
"name": "Note adhésive 1",
"type": "n8n-nodes-base.stickyNote",
"position": [
704,
1360
],
"parameters": {
"width": 464,
"height": 80,
"content": "### 1. Upload Your PDF Document Here \n- A manual execution trigger for uploading and processing PDF documents into the knowledge base."
},
"typeVersion": 1
},
{
"id": "2aefbbd3-1234-4843-bf34-430b229faa1f",
"name": "Note adhésive 2",
"type": "n8n-nodes-base.stickyNote",
"position": [
1872,
1296
],
"parameters": {
"width": 432,
"height": 80,
"content": "### 2.1 Backup Documents to Google Drive \n- Uploads a copy of the original PDF file to a connected Google Drive folder for safekeeping and future reference."
},
"typeVersion": 1
},
{
"id": "88a087f2-8656-4e82-b384-efdaf51ec021",
"name": "Note adhésive 4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1424,
176
],
"parameters": {
"width": 560,
"height": 96,
"content": "### 3. Telegram Document Query Agent (GPT with RAG) \n- Sends the user’s text message to OpenAI’s Chat Model. Uses embeddings to retrieve relevant document chunks and generate a context-aware response using Retrieval-Augmented Generation."
},
"typeVersion": 1
},
{
"id": "38627375-43c0-47ad-87ab-a3ef94093c28",
"name": "Note adhésive 7",
"type": "n8n-nodes-base.stickyNote",
"position": [
1360,
1120
],
"parameters": {
"color": 4,
"width": 496,
"height": 96,
"content": "### Default Data Loader \nExtracts and chunks text from the uploaded PDF documents to prepare them for semantic embedding."
},
"typeVersion": 1
},
{
"id": "8b2e116c-003f-4eb7-9cf1-30ac4cbd87d3",
"name": "Note adhésive 9",
"type": "n8n-nodes-base.stickyNote",
"position": [
688,
896
],
"parameters": {
"width": 352,
"height": 112,
"content": "### 2.2 Insert Data to Store (Embeddings) \nConverts document chunks into vector embeddings using OpenAI and inserts them into the vector store for future retrieval."
},
"typeVersion": 1
},
{
"id": "2abc9178-add2-4d8e-b395-cc9713ed4a2e",
"name": "Note adhésive 10",
"type": "n8n-nodes-base.stickyNote",
"position": [
2432,
480
],
"parameters": {
"width": 540,
"height": 580,
"content": ""
},
"typeVersion": 1
},
{
"id": "1de83861-0a7d-4e0c-9ceb-beacbe84749b",
"name": "Note adhésive 8",
"type": "n8n-nodes-base.stickyNote",
"position": [
2432,
1088
],
"parameters": {
"width": 544,
"height": 80,
"content": "Sample document: https://ptgmedia.pearsoncmg.com/images/9780138203283/samplepages/9780138203283_Sample.pdf"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {},
"versionId": "50ae16d0-7565-4f29-8f21-d769face925a",
"connections": {
"91077637-5e75-4bb2-8419-235420bc5a96": {
"main": [
[
{
"node": "79a7f8b5-7af2-479c-883c-a4e02ce4bee8",
"type": "main",
"index": 0
}
]
]
},
"ce86b41b-7e1b-458f-ab13-d6b187854ae8": {
"ai_tool": [
[
{
"node": "0039537b-558c-4fe8-9716-f8aa13676f4a",
"type": "ai_tool",
"index": 0
}
]
]
},
"7470655a-650a-48ca-98e0-b248cf99d18e": {
"main": [
[
{
"node": "0039537b-558c-4fe8-9716-f8aa13676f4a",
"type": "main",
"index": 0
}
],
[
{
"node": "62ae0117-0d2c-47dd-a772-7c4cd70885ec",
"type": "main",
"index": 0
}
]
]
},
"d4227342-0a19-420e-b088-2e37186ad074": {
"main": [
[
{
"node": "7470655a-650a-48ca-98e0-b248cf99d18e",
"type": "main",
"index": 0
}
]
]
},
"26d63e24-2592-41f9-9b4b-edab81e99f21": {
"ai_embedding": [
[
{
"node": "0f4185ea-d7a9-44a9-a824-98f9dc2c2a5d",
"type": "ai_embedding",
"index": 0
},
{
"node": "ce86b41b-7e1b-458f-ab13-d6b187854ae8",
"type": "ai_embedding",
"index": 0
}
]
]
},
"d43cf585-4192-4f53-9532-4677923289ba": {
"ai_languageModel": [
[
{
"node": "0039537b-558c-4fe8-9716-f8aa13676f4a",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"3a69c8a7-bf95-4de2-84b0-ae2cc3d2e4e7": {
"ai_document": [
[
{
"node": "0f4185ea-d7a9-44a9-a824-98f9dc2c2a5d",
"type": "ai_document",
"index": 0
}
]
]
},
"0f4185ea-d7a9-44a9-a824-98f9dc2c2a5d": {
"main": [
[]
]
},
"fda67b3b-9844-40e4-aa53-252d2e36e667": {
"main": [
[]
]
},
"0039537b-558c-4fe8-9716-f8aa13676f4a": {
"main": [
[
{
"node": "fda67b3b-9844-40e4-aa53-252d2e36e667",
"type": "main",
"index": 0
}
]
]
},
"83ed351e-90e8-458f-a01b-73001ef1800f": {
"main": [
[
{
"node": "0f4185ea-d7a9-44a9-a824-98f9dc2c2a5d",
"type": "main",
"index": 0
},
{
"node": "91077637-5e75-4bb2-8419-235420bc5a96",
"type": "main",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Avancé - Wiki interne, RAG IA
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Trung Tran
@trungtranEmpowering small and medium businesses with smart automation and practical AI, no big tech team required. Reach out: lets@automatewith.me
Partager ce workflow