Construire un chatbot d'assistance IT qui exploite les portails de support existants
Ceci est unSupportworkflow d'automatisation du domainecontenant 16 nœuds.Utilise principalement des nœuds comme If, Set, SplitOut, Aggregate, HttpRequest. Construire un chatbot d'assistance pour les IT en utilisant le portail de support existant
- •Peut nécessiter les informations d'identification d'authentification de l'API cible
- •Clé API OpenAI
Nœuds utilisés (16)
Catégorie
{
"meta": {
"instanceId": "408f9fb9940c3cb18ffdef0e0150fe342d6e655c3a9fac21f0f644e8bedabcd9",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "8f203423-b063-4918-a6ec-dad3ac7d1a20",
"name": "À la réception du message",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
860,
-100
],
"webhookId": "c82193c7-163c-4556-942f-81c80037e0ea",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "d9f2e90f-128b-458b-b3cf-79db2ec08633",
"name": "Modèle de chat OpenAI",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1000,
100
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "8gccIjcuf3gvaoEr",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "4f752502-8589-4e31-bbe1-4b8395e7325a",
"name": "Simple Mémoire",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
1160,
100
],
"parameters": {},
"typeVersion": 1.3
},
{
"id": "61ca5a4b-3661-4330-ac4c-e09e75dd764c",
"name": "Acuity Support Search API",
"type": "n8n-nodes-base.httpRequest",
"position": [
1840,
80
],
"parameters": {
"url": "https://2al21hjwoz-dsn.algolia.net/1/indexes/*/queries?x-algolia-agent=Algolia%20for%20JavaScript%20(3.35.1)%3B%20Browser%20(lite)%3B%20instantsearch.js%201.12.1%3B%20Zendesk%20Integration%20(2.32.0)%3B%20JS%20Helper%20(2.28.1)&x-algolia-application-id=2AL21HJWOZ&x-algolia-api-key=c3c07dd7fb575008575163c085a62b92",
"method": "POST",
"options": {},
"jsonBody": "={{\n{\n \"requests\":[\n {\n \"indexName\":\"Zendesk 4-25\",\n \"params\": \"query=\" + $json.query + \"&hitsPerPage=5&page=0&facets=%5B%22locale.locale%22%2C%22label_names%22%2C%22category.title%22%5D&tagFilters=&facetFilters=%5B%22locale.locale%3Aen-us%22%5D\"\n }\n ]\n}\n}}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"headerParameters": {
"parameters": [
{
"name": "Accept-Language",
"value": "en"
},
{
"name": "Cache-Control",
"value": "no-cache"
},
{
"name": "Connection",
"value": "keep-alive"
},
{
"name": "Origin",
"value": "https://help.acuityscheduling.com"
},
{
"name": "Referer",
"value": "https://help.acuityscheduling.com/"
},
{
"name": "User-Agent",
"value": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0 Safari/537.36"
},
{
"name": "accept",
"value": "application/json"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "8ecd6287-982c-4754-9300-4c6d54202273",
"name": "Extract Relevant Fields",
"type": "n8n-nodes-base.set",
"position": [
2560,
80
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "a6973f14-e17d-46b0-9c5b-c6d9967dbf99",
"name": "title",
"type": "string",
"value": "={{ $json.title }}"
},
{
"id": "88092adb-7f63-4daa-8c7a-cbd85750e180",
"name": "body",
"type": "string",
"value": "={{ $json.body_safe }}"
},
{
"id": "12718897-a73d-4c3a-bcfb-b17c890458ec",
"name": "url",
"type": "string",
"value": "=https://help.acuityscheduling.com/hc/en-us/articles/{{ $json.id }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "bf5855b2-8e73-4c29-b277-adee63e8bf59",
"name": "Results to Items",
"type": "n8n-nodes-base.splitOut",
"position": [
2360,
80
],
"parameters": {
"options": {},
"fieldToSplitOut": "results[0].hits"
},
"typeVersion": 1
},
{
"id": "c9329816-bbe0-4de7-b6fb-fa87783f6a5c",
"name": "Has Results?",
"type": "n8n-nodes-base.if",
"position": [
2040,
80
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "f5d7e890-f00a-4252-8588-c6662e71790c",
"operator": {
"type": "array",
"operation": "lengthGt",
"rightType": "number"
},
"leftValue": "={{ $json.results[0]?.hits ?? [] }}",
"rightValue": 0
}
]
}
},
"typeVersion": 2.2
},
{
"id": "860a178a-d500-4291-acfc-9c9f4638d6c7",
"name": "Empty Response",
"type": "n8n-nodes-base.set",
"position": [
2360,
260
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "0ce36950-83d9-4964-8763-f329a4cda5a8",
"name": "response",
"type": "array",
"value": "[]"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "c9f2a08b-88c2-4287-994c-f7af58e98301",
"name": "Agréger Response",
"type": "n8n-nodes-base.aggregate",
"position": [
2760,
80
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData",
"destinationFieldName": "response"
},
"typeVersion": 1
},
{
"id": "5f1f8874-7022-4ea1-b0a7-de42c4f800a1",
"name": "Knowledgebase Outil",
"type": "@n8n/n8n-nodes-langchain.toolWorkflow",
"position": [
1320,
100
],
"parameters": {
"name": "acuity_support_search",
"workflowId": {
"__rl": true,
"mode": "id",
"value": "={{ $workflow.id }}"
},
"description": "Call this tool to query AcuityScheduling's Support Center Search API.",
"workflowInputs": {
"value": {
"query": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('query', ``, 'string') }}"
},
"schema": [
{
"id": "query",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "query",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
}
},
"typeVersion": 2.1
},
{
"id": "3913ddaa-852e-4463-a072-fe8be22bc184",
"name": "Note adhésive",
"type": "n8n-nodes-base.stickyNote",
"position": [
720,
-300
],
"parameters": {
"color": 7,
"width": 780,
"height": 580,
"content": "## 1. Simple Chatbot with Knowledgebase Tool\n[Learn more about AI agents](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent)\n\nThe AI agent node is the simplest and recommended way to create user-friendly chatbots in n8n. Here, we'll define a support agent which can answer AcuityScheduling.com questions. To ensure the answers are accurate and up-to-date, we'll connect it to the support knowledgebase via a custom workflow tool."
},
"typeVersion": 1
},
{
"id": "e24d75f9-6d3c-4bca-b67f-33737ee969ee",
"name": "Note adhésive1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1540,
-140
],
"parameters": {
"color": 7,
"width": 700,
"height": 440,
"content": "## 2. Use your Existing Help Portal Search\n[Read more about the HTTP request tool](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.httprequest)\n\nThe concept of RAG need to be synonymous with vector stores! In truth, many companies with a decent enough support website are able to leverage this existing knowledgebase for support agents. This saves time, money and effort and additional avoids maintenance of a vector store where syncs and updates are common."
},
"typeVersion": 1
},
{
"id": "f5feebf1-fd6d-4558-a868-7ea4f852386c",
"name": "Note adhésive2",
"type": "n8n-nodes-base.stickyNote",
"position": [
2260,
-140
],
"parameters": {
"color": 7,
"width": 720,
"height": 600,
"content": "## 3. Clean up the Results to Optimise Tokens\n[Read more about the aggregate node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.aggregate)\n\nOf course, the results are intended for the website format but by using the custom workflow tool, we can edit it down to suit our chat scenario and save LLM costs (in terms of tokens) whilst we're at it. "
},
"typeVersion": 1
},
{
"id": "8132de59-9b47-460a-9cb9-f2ec83123a3f",
"name": "AcuityScheduling Support Chatbot",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1060,
-100
],
"parameters": {
"options": {
"systemMessage": "You are a support assistant for the SaaS company, AcuityScheduling.com. Your task is to openly help the user with any questions regarding the AcuityScheduling service however, you are restricted to only this service. If the user asks questions unrelated to AcuityScheduling, you may ask them for clarification, explain you are not able to help them out of scope or redirect them to support@acuityScheduling.com. Be factual in your answer, tap into the resources or tools available and do not rely on your training data (which might be out-of-date). When returning a response to the user, you are encouraged to share the URL of the knowledgebase page where the user can explore the documentation for themselves."
}
},
"typeVersion": 1.8
},
{
"id": "564bde38-25ea-4969-aa3f-bff66ec2782f",
"name": "Note adhésive3",
"type": "n8n-nodes-base.stickyNote",
"position": [
260,
-840
],
"parameters": {
"width": 440,
"height": 1120,
"content": "## Try it Out!\n### This n8n template demonstrates how you can leverage existing support site search to power your Support Chatbots and agents.\n\nBuilding a support chatbot need not be complicated! If building and indexing vector stores or duplicating data isn't necessarily your thing, an alternative implementation of the [RAG](https://www.databricks.com/glossary/retrieval-augmented-generation-rag) approach is to leverage existing knowledge-bases such as support portals.\n\n### How it works\n* A simple AI agent is connected with chat trigger to receive user queries.\n* The AI agent is instructed to fetch information from the knowledge-base via the attached custom workflow tool (aka \"knowledgebase tool\").\n* There is no step to replicate the entire support articles database into a vector store. You may choose not too because of time, cost and maintainence involved.\n* Instead, the tool leverages the existing support portal's search API to retrieve knowledge-base articles.\n* Finally, the search results are formatted before sending an aggregated response back to the agent.\n\n### How to use?\n* Customise the subworkflow to work with your own support portal API and format accordingly.\n* Try the following queries\n * How do I connect my icloud to acuityScheduling?\n * How do I download past invoices for my Acuity account?\n\n### Requirements\n* OpenAI for LLM.\n* If your organisation's APIs require authorisation, you may need to add custom credentials as necessary.\n\n### Customising this workflow\n* Add additional tools to reach other parts of your internal knowledgebase.\n* Not using OpenAI? Feel free to swap but ensure the LLM has tools/function calling support.\n\n\n### Need Help?\nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!\n\nHappy Hacking!"
},
"typeVersion": 1
},
{
"id": "a918718f-915d-4d5c-a7c2-a015b8a84bbb",
"name": "KnowledgeBase Outil Subworkflow",
"type": "n8n-nodes-base.executeWorkflowTrigger",
"position": [
1620,
80
],
"parameters": {
"workflowInputs": {
"values": [
{
"name": "query"
}
]
}
},
"typeVersion": 1.1
}
],
"pinData": {},
"connections": {
"c9329816-bbe0-4de7-b6fb-fa87783f6a5c": {
"main": [
[
{
"node": "bf5855b2-8e73-4c29-b277-adee63e8bf59",
"type": "main",
"index": 0
}
],
[
{
"node": "860a178a-d500-4291-acfc-9c9f4638d6c7",
"type": "main",
"index": 0
}
]
]
},
"Simple Memory": {
"ai_memory": [
[
{
"node": "8132de59-9b47-460a-9cb9-f2ec83123a3f",
"type": "ai_memory",
"index": 0
}
]
]
},
"bf5855b2-8e73-4c29-b277-adee63e8bf59": {
"main": [
[
{
"node": "8ecd6287-982c-4754-9300-4c6d54202273",
"type": "main",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "8132de59-9b47-460a-9cb9-f2ec83123a3f",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Knowledgebase Tool": {
"ai_tool": [
[
{
"node": "8132de59-9b47-460a-9cb9-f2ec83123a3f",
"type": "ai_tool",
"index": 0
}
]
]
},
"8ecd6287-982c-4754-9300-4c6d54202273": {
"main": [
[
{
"node": "Aggregate Response",
"type": "main",
"index": 0
}
]
]
},
"61ca5a4b-3661-4330-ac4c-e09e75dd764c": {
"main": [
[
{
"node": "c9329816-bbe0-4de7-b6fb-fa87783f6a5c",
"type": "main",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "8132de59-9b47-460a-9cb9-f2ec83123a3f",
"type": "main",
"index": 0
}
]
]
},
"KnowledgeBase Tool Subworkflow": {
"main": [
[
{
"node": "61ca5a4b-3661-4330-ac4c-e09e75dd764c",
"type": "main",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Avancé - Support
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Jimleuk
@jimleukFreelance consultant based in the UK specialising in AI-powered automations. I work with select clients tackling their most challenging projects. For business enquiries, send me an email at hello@jimle.uk LinkedIn: https://www.linkedin.com/in/jimleuk/ X/Twitter: https://x.com/jimle_uk
Partager ce workflow