Rédaction IA de textes avec RAG contextuel hybride
Ceci est unAI RAG, Multimodal AIworkflow d'automatisation du domainecontenant 76 nœuds.Utilise principalement des nœuds comme If, Set, Code, Wait, Crypto. Synchronisation Google Drive vers Supabase pour une base de données vectorielle contextuelle pour les applications RAG
- •URL et Clé API Supabase
- •Informations d'identification Google Drive API
- •Peut nécessiter les informations d'identification d'authentification de l'API cible
- •Clé API OpenAI
Nœuds utilisés (76)
Catégorie
{
"id": "XwFvFryyo4goPzpd",
"meta": {
"instanceId": "00761fd5aea81495387b0889e15912dcc912b73b7bf62f5ca3898afbd7a79723",
"templateCredsSetupCompleted": true
},
"name": "Contextual Hybrid RAG AI copy",
"tags": [
{
"id": "YINdrIOThMQjiVkB",
"name": "RAG",
"createdAt": "2025-06-18T21:07:48.174Z",
"updatedAt": "2025-06-18T21:07:48.174Z"
},
{
"id": "j0SNhalFSbPAhdWo",
"name": "n8n creator",
"createdAt": "2025-09-02T01:40:23.866Z",
"updatedAt": "2025-09-02T01:40:23.866Z"
}
],
"nodes": [
{
"id": "c1422e6a-289f-4499-b19b-62df452010b2",
"name": "Agent IA",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
-2544,
-736
],
"parameters": {
"options": {
"systemMessage": "Only generate answers based on the results from the connected database. Do no under any circumstance, get answers from anywhere else.\nfor every query check the database to see if you can find an answer. If you can not or are not sure, then say 'Sorry, I don’t know'. Never come up with answers. Only get answers from the database"
}
},
"typeVersion": 2
},
{
"id": "efb0bd4c-0b6d-4b96-8e8d-d1b511174151",
"name": "À réception d'un message de chat",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-2784,
-736
],
"webhookId": "f4516070-1da1-41ad-8320-bd3a31cddf12",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "3c285b17-d4f0-4e8e-809b-38be2a5ede94",
"name": "Mémoire Simple",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
-2544,
-528
],
"parameters": {
"contextWindowLength": 10
},
"typeVersion": 1.3
},
{
"id": "8a624394-5019-4a67-a31c-c56fad7b1406",
"name": "OpenAI Modèle de Chat",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
-2704,
-528
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1",
"cachedResultName": "gpt-4.1"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "QsPyEUltWeliSiFb",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "317048f7-1423-4922-ac19-ad1b79152359",
"name": "Google Drive",
"type": "n8n-nodes-base.googleDrive",
"position": [
-3536,
304
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "id",
"value": "={{ $json.id }}"
},
"options": {},
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "KZY6CHPvoIbIxMKd",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "27074acb-2256-4b79-a093-df35755ca0e8",
"name": "Gestionnaire d'Enregistrements de Recherche",
"type": "n8n-nodes-base.supabase",
"position": [
-2608,
304
],
"parameters": {
"limit": 1,
"filters": {
"conditions": [
{
"keyName": "gd_file_id",
"keyValue": "={{ $('Loop Over Items').item.json.id }}",
"condition": "eq"
}
]
},
"tableId": "record_managerhs",
"operation": "getAll"
},
"credentials": {
"supabaseApi": {
"id": "bi5dJhIwrvuB6YQA",
"name": "CHRAG"
}
},
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "cc825e4c-1f68-4688-8e32-5d08b3aab1ac",
"name": "Créer une Ligne dans le Gestionnaire d'Enregistrements",
"type": "n8n-nodes-base.supabase",
"position": [
-1808,
48
],
"parameters": {
"tableId": "record_managerhs",
"fieldsUi": {
"fieldValues": [
{
"fieldId": "gd_file_id",
"fieldValue": "={{ $('Loop Over Items').item.json.id }}"
},
{
"fieldId": "hash",
"fieldValue": "={{ $('Generate Hash').item.json.hash }}"
}
]
}
},
"credentials": {
"supabaseApi": {
"id": "bi5dJhIwrvuB6YQA",
"name": "CHRAG"
}
},
"typeVersion": 1
},
{
"id": "39445058-69b3-4bf1-8236-99a4a55e7d86",
"name": "Commutateur",
"type": "n8n-nodes-base.switch",
"position": [
-2416,
288
],
"parameters": {
"rules": {
"values": [
{
"outputKey": "does not exist",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "loose"
},
"combinator": "and",
"conditions": [
{
"id": "231bfd13-5f93-4801-b0f5-9ff2d949c165",
"operator": {
"type": "object",
"operation": "empty",
"singleValue": true
},
"leftValue": "={{ $json }}",
"rightValue": ""
}
]
},
"renameOutput": true
},
{
"outputKey": "modified",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "loose"
},
"combinator": "and",
"conditions": [
{
"id": "b311878c-297f-4d5b-ba2f-f1babb9c9f7b",
"operator": {
"type": "string",
"operation": "notEquals"
},
"leftValue": "={{ $json.hash }}",
"rightValue": "={{ $('Generate Hash').item.json.hash }}"
}
]
},
"renameOutput": true
},
{
"outputKey": "exist",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "loose"
},
"combinator": "and",
"conditions": [
{
"id": "dc26f05e-859a-40a4-b0e3-49abc55397a5",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $('Generate Hash').item.json.hash }}",
"rightValue": "={{ $json.hash }}"
}
]
},
"renameOutput": true
}
]
},
"options": {},
"looseTypeValidation": true
},
"typeVersion": 3.2
},
{
"id": "10062467-974d-4103-aeb3-bff32d0c6e3f",
"name": "Supprimer les Vecteurs Précédents",
"type": "n8n-nodes-base.supabase",
"position": [
-2016,
368
],
"parameters": {
"tableId": "documentshs",
"operation": "delete",
"filterType": "string",
"filterString": "=metadata->>file_id=eq.{{ $('Loop Over Items').item.json.id }}"
},
"credentials": {
"supabaseApi": {
"id": "GZCrvWKfz1aQNVve",
"name": "Supabase - RAG"
}
},
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "e145b247-04d6-40f9-b3ab-7ad034aa0a31",
"name": "Générer un Hash",
"type": "n8n-nodes-base.crypto",
"position": [
-2848,
304
],
"parameters": {
"type": "SHA256",
"value": "={{ $json.text }}",
"dataPropertyName": "hash"
},
"typeVersion": 1
},
{
"id": "40aa27bb-4577-4d2d-abc4-0ed103fc0cbd",
"name": "Mettre à Jour le Gestionnaire d'Enregistrements",
"type": "n8n-nodes-base.supabase",
"position": [
-1600,
368
],
"parameters": {
"filters": {
"conditions": [
{
"keyName": "id",
"keyValue": "={{ $('Search Record Manager').item.json.id }}",
"condition": "eq"
}
]
},
"tableId": "record_managerhs",
"fieldsUi": {
"fieldValues": [
{
"fieldId": "hash",
"fieldValue": "={{ $('Generate Hash').item.json.hash }}"
}
]
},
"operation": "update"
},
"credentials": {
"supabaseApi": {
"id": "GZCrvWKfz1aQNVve",
"name": "Supabase - RAG"
}
},
"typeVersion": 1
},
{
"id": "f0c2dcd5-5fe8-4968-a510-0f7d997d3b2f",
"name": "Agrégateur",
"type": "n8n-nodes-base.aggregate",
"position": [
-1824,
368
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData"
},
"typeVersion": 1
},
{
"id": "56bc70d8-aba3-4534-be6b-05cce089505a",
"name": "Chaîne LLM de Base",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
-1248,
272
],
"parameters": {
"text": "=# File Name\n{{ $('Loop Over Items').item.json.name}}\n\n# File Content\n{{ $('Set Text').item.json.text.split(/\\s+/).length > 500\n? $('Set Text').item.json.text.split(/\\s+/).slice(0, 500).join(' ') + '...'\n: $('Set Text').item.json.text}}",
"batching": {},
"messages": {
"messageValues": [
{
"message": "=Based on the provided file name and file contents, extract out a 1 sentence description of what the document is about and classify the document based on motorsport category. \n\n Only output JSON in the following format \n\n{ \n\"document_summary\": \"document summary\"\n}\n\nIf you are unsure, just output N/A in the field. \n\n"
}
]
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.7
},
{
"id": "c99060a8-fe04-44c8-86ad-76ad9c0f2f6c",
"name": "Analyseur de Sortie Structurée",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
-1072,
432
],
"parameters": {
"jsonSchemaExample": "{ \n\"documentSummary\": \"document summary\"\n} "
},
"typeVersion": 1.3
},
{
"id": "478f6320-0c37-478c-8321-8083e5d903fe",
"name": "OpenAI Modèle de Chat1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
-1264,
432
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1",
"cachedResultName": "gpt-4.1"
},
"options": {
"responseFormat": "json_object"
}
},
"credentials": {
"openAiApi": {
"id": "QsPyEUltWeliSiFb",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "3e9028df-ff29-4599-9ae9-c08a3811f047",
"name": "Extraire depuis un Fichier",
"type": "n8n-nodes-base.extractFromFile",
"position": [
-3344,
304
],
"parameters": {
"options": {},
"operation": "pdf"
},
"typeVersion": 1
},
{
"id": "df98c1e9-b29c-4558-bbe4-a8925fd5a2f1",
"name": "Définir le Texte",
"type": "n8n-nodes-base.set",
"position": [
-3104,
304
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "766bf659-155f-4d60-a033-085b3a752933",
"name": "text",
"type": "string",
"value": "={{ $json.text }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "258005cc-104e-4e31-96f0-a3fae138da93",
"name": "Boucle sur les Éléments1",
"type": "n8n-nodes-base.splitInBatches",
"position": [
-2224,
976
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "84ac45bc-27c8-4fce-8e03-be8c9cf18fe8",
"name": "Gestionnaire d'Enregistrements de Recherche1",
"type": "n8n-nodes-base.supabase",
"position": [
-1936,
976
],
"parameters": {
"limit": 1,
"filters": {
"conditions": [
{
"keyName": "gd_file_id",
"keyValue": "={{ $('Loop Over Items1').item.json.id }}",
"condition": "eq"
}
]
},
"tableId": "record_managerhs",
"operation": "getAll"
},
"credentials": {
"supabaseApi": {
"id": "bi5dJhIwrvuB6YQA",
"name": "CHRAG"
}
},
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "81fc8e77-f1fb-4914-87b7-489bdcdf3f9d",
"name": "Si1",
"type": "n8n-nodes-base.if",
"position": [
-1728,
976
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "21ca0db4-5ca4-49e8-86c1-9e09c469122d",
"operator": {
"type": "object",
"operation": "exists",
"singleValue": true
},
"leftValue": "={{$json}}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "9561c9dd-0b82-4cdb-bed0-a3307d206394",
"name": "Supprimer les Vecteurs Précédents1",
"type": "n8n-nodes-base.supabase",
"position": [
-1472,
976
],
"parameters": {
"tableId": "documentshs",
"operation": "delete",
"filterType": "string",
"filterString": "=metadata->>file_id=eq.{{ $('Loop Over Items1').item.json.id }}"
},
"credentials": {
"supabaseApi": {
"id": "bi5dJhIwrvuB6YQA",
"name": "CHRAG"
}
},
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "31cc03e7-50db-4c6d-b266-136225457218",
"name": "Agrégateur1",
"type": "n8n-nodes-base.aggregate",
"position": [
-1280,
976
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData"
},
"typeVersion": 1
},
{
"id": "0c76dd9b-be10-4fdd-8536-ea3eb75a6cba",
"name": "Supprimer l'Enregistrement du Gestionnaire d'Enregistrements1",
"type": "n8n-nodes-base.supabase",
"position": [
-1072,
976
],
"parameters": {
"filters": {
"conditions": [
{
"keyName": "id",
"keyValue": "={{ $('Search Record Manager1').item.json.id }}",
"condition": "eq"
}
]
},
"tableId": "record_managerhs",
"operation": "delete"
},
"credentials": {
"supabaseApi": {
"id": "bi5dJhIwrvuB6YQA",
"name": "CHRAG"
}
},
"typeVersion": 1
},
{
"id": "c41851a0-ba52-432d-ae00-752bb630cead",
"name": "Google Drive2",
"type": "n8n-nodes-base.googleDrive",
"position": [
-848,
976
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "id",
"value": "={{ $('Loop Over Items1').item.json.id }}"
},
"options": {},
"operation": "deleteFile"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "KZY6CHPvoIbIxMKd",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "03516980-317e-483d-9471-6cf9e3148415",
"name": "Surveiller GD Corbeille",
"type": "n8n-nodes-base.googleDriveTrigger",
"position": [
-2432,
976
],
"parameters": {
"event": "fileCreated",
"options": {},
"pollTimes": {
"item": [
{
"mode": "everyMinute"
}
]
},
"triggerOn": "specificFolder",
"folderToWatch": {
"__rl": true,
"mode": "list",
"value": "1gwf7pIH8X5wU-i0YMw-j7qPSA4MnA40L",
"cachedResultUrl": "https://drive.google.com/drive/folders/1gwf7pIH8X5wU-i0YMw-j7qPSA4MnA40L",
"cachedResultName": "Trash"
}
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "KZY6CHPvoIbIxMKd",
"name": "Google Drive account"
}
},
"typeVersion": 1
},
{
"id": "a791c6a2-1311-40cc-837e-c875425774cc",
"name": "Surveiller GD Fichiers RAG",
"type": "n8n-nodes-base.googleDriveTrigger",
"position": [
-3984,
304
],
"parameters": {
"event": "fileCreated",
"options": {},
"pollTimes": {
"item": [
{
"mode": "everyMinute"
}
]
},
"triggerOn": "specificFolder",
"folderToWatch": {
"__rl": true,
"mode": "list",
"value": "1e1Af14X5nlPq6oVEqbHs4h7pQtYktzAM",
"cachedResultUrl": "https://drive.google.com/drive/folders/1e1Af14X5nlPq6oVEqbHs4h7pQtYktzAM",
"cachedResultName": "RAG Files"
}
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "KZY6CHPvoIbIxMKd",
"name": "Google Drive account"
}
},
"typeVersion": 1
},
{
"id": "3024e04e-86c4-43d6-819d-22f45ef40750",
"name": "Lors de l'Exécution par un Autre Workflow",
"type": "n8n-nodes-base.executeWorkflowTrigger",
"position": [
-2016,
-544
],
"parameters": {
"workflowInputs": {
"values": [
{
"name": "query"
}
]
}
},
"typeVersion": 1.1
},
{
"id": "5da16ea7-5c2c-4326-8069-7228ea20041f",
"name": "Interroger le Vector Store",
"type": "@n8n/n8n-nodes-langchain.toolWorkflow",
"position": [
-2272,
-512
],
"parameters": {
"workflowId": {
"__rl": true,
"mode": "list",
"value": "XwFvFryyo4goPzpd",
"cachedResultName": "Contextual Hybrid RAG AI copy"
},
"description": "Call this tool to get knowledge from our vector database",
"workflowInputs": {
"value": {
"query": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('query', ``, 'string') }}"
},
"schema": [
{
"id": "query",
"type": "string",
"display": true,
"required": false,
"displayName": "query",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"query"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
}
},
"typeVersion": 2.2
},
{
"id": "467f3d3b-8727-413b-aa8d-7547ac7d8a68",
"name": "Boucle sur les Éléments",
"type": "n8n-nodes-base.splitInBatches",
"position": [
-3776,
304
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "7d2d4e71-ce5f-4e08-a5fb-2ca01d17e6a6",
"name": "Définir le Texte pour le Découpage",
"type": "n8n-nodes-base.set",
"position": [
-864,
272
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "5fb33f33-8d7f-467e-ab8b-784c411b63b2",
"name": "content",
"type": "string",
"value": "={{ $('Set Text').item.json.text }}"
},
{
"id": "d0fdcb3c-915f-4e39-93de-ac8244415be5",
"name": "documentSummary",
"type": "string",
"value": "={{ $json.output.document_summary }}"
},
{
"id": "5ffe4726-56f1-4478-9f89-ba862efce940",
"name": "file_id",
"type": "string",
"value": "={{ $('Loop Over Items').item.json.id }}"
},
{
"id": "df951786-5196-4590-9e32-fed42ef35200",
"name": "fileName",
"type": "string",
"value": "={{ $('Loop Over Items').item.json.name }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "9a68682b-7a2f-40ca-91a9-e0d935ec7ed3",
"name": "Note Adhésive1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-4016,
144
],
"parameters": {
"width": 160,
"height": 304,
"content": "### Watch GD folder\n"
},
"typeVersion": 1
},
{
"id": "22acc35b-1370-450f-90f2-ff4a2c9f61e4",
"name": "Note Adhésive6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-3136,
144
],
"parameters": {
"width": 160,
"height": 300,
"content": "### Set Text"
},
"typeVersion": 1
},
{
"id": "cb0d4e98-3716-4bba-8f33-a1c0ee5224a7",
"name": "Note Adhésive7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2896,
144
],
"parameters": {
"width": 172,
"height": 308,
"content": " ### Generate Hash based on the text. If text changes we have a different hash"
},
"typeVersion": 1
},
{
"id": "6f0493ae-8973-48c8-9338-f62d1b826445",
"name": "Note Adhésive8",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2656,
144
],
"parameters": {
"width": 188,
"height": 308,
"content": "### Search the record manager to see if we have any files in the database, that have the same file id. If it does, it will return the hash"
},
"typeVersion": 1
},
{
"id": "6336a34a-fade-435c-b0a7-5257b48c5579",
"name": "Note Adhésive9",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2432,
112
],
"parameters": {
"width": 180,
"height": 340,
"content": "### Compare the Hash from generated hash and (if it exists) hash from record manager search to determine if file exists or not and if modified"
},
"typeVersion": 1
},
{
"id": "be85f58e-3cff-42f7-b1ff-d1f22c781961",
"name": "Note Adhésive10",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2080,
256
],
"parameters": {
"width": 640,
"height": 280,
"content": "### If the doc is modified, we delete all the vectors related to that google id and update record manager id and hash"
},
"typeVersion": 1
},
{
"id": "79ee3377-d001-4bd7-8d25-c48e5676aff7",
"name": "Note Adhésive11",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1328,
176
],
"parameters": {
"width": 380,
"height": 220,
"content": "### Create summary of document for metadata"
},
"typeVersion": 1
},
{
"id": "2943dad5-ae6b-4fde-a293-eb8e319bc41b",
"name": "Note Adhésive12",
"type": "n8n-nodes-base.stickyNote",
"position": [
-896,
176
],
"parameters": {
"width": 160,
"height": 224,
"content": "### Set text to send to sub-workflow"
},
"typeVersion": 1
},
{
"id": "6109b822-9860-4a85-860b-15dd4494bac7",
"name": "Note Adhésive14",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2464,
864
],
"parameters": {
"width": 156,
"height": 280,
"content": "### Watch GD Trash folder"
},
"typeVersion": 1
},
{
"id": "4522d72b-9a92-4614-a2c8-f6a739d2169d",
"name": "Note Adhésive15",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1984,
864
],
"parameters": {
"width": 192,
"height": 264,
"content": "### Search record manager on corresponding GD file id"
},
"typeVersion": 1
},
{
"id": "c57592c9-e02e-4861-a1e3-189f3b24f7cf",
"name": "Note Adhésive16",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1760,
864
],
"parameters": {
"width": 160,
"height": 264,
"content": "### if records exist for this id or not\n"
},
"typeVersion": 1
},
{
"id": "9af264c1-de52-4fd7-9366-7d573499b02a",
"name": "Note Adhésive17",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1520,
864
],
"parameters": {
"width": 580,
"height": 264,
"content": "### Delete records from supabase"
},
"typeVersion": 1
},
{
"id": "0403746d-e354-4d88-93d4-a05f9faa4aea",
"name": "Note Adhésive18",
"type": "n8n-nodes-base.stickyNote",
"position": [
-880,
864
],
"parameters": {
"width": 150,
"height": 264,
"content": "### Delete file from GD"
},
"typeVersion": 1
},
{
"id": "d48e00db-570d-41b5-a5db-4435059fe3ec",
"name": "Note Adhésive19",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2304,
-624
],
"parameters": {
"width": 1020,
"height": 240,
"content": "## Query Seach Supabase Database Tool with workflow"
},
"typeVersion": 1
},
{
"id": "1af9acb3-e6a8-435d-9d91-cb84c5fd608b",
"name": "Note Adhésive20",
"type": "n8n-nodes-base.stickyNote",
"position": [
-688,
192
],
"parameters": {
"width": 150,
"height": 248,
"content": "### Set up data\n"
},
"typeVersion": 1
},
{
"id": "936e7ead-1a8c-4337-b784-5732ef2784ac",
"name": "Note Adhésive",
"type": "n8n-nodes-base.stickyNote",
"position": [
-6000,
-16
],
"parameters": {
"width": 752,
"height": 800,
"content": "## Setting up Supabase\n\n\n### Create a project, and fill in the details as guided by Supabase. On the left hand side, you will find the Project Overview section. Scroll down to connecting your project section and you will find the url and api key, which you can place in the credentials section or in the create new credentials in a supabase node.\n\n\n\n\n\n## Setting up the Hybrid Search in Supabase\n### You can learn more about hybrid search here: https://supabase.com/docs/guides/ai/hybrid-search\n\n### Go to the SQL Editor tab, and delete the existing code. First we will create the documents for the Hybrid Search called documentsHS. Find the code in a note in this workflow to the left of this sticky note. Copy & paste the code in the SQL Editor and click run. You will get a message saying pg_notify. The documentsHS is complete. Now delete the code and copy paste the code for the record manager called record_managerHS in the sticky note on the left. You will get a message saying Success. No Rows Returned. You have now created the tables for the hybrid search. \n\n## To call the hybrid search, we will use the edge function.\n### To create the edge function, go to the edge function (left hand side bar), click deploy a new function, and select Via AI Assistant. Paste \"Create a new edge function that calls on the match_documentshs_hybrid so it can be called through API\". This will create your edge function and you can click on deploy to deploy it. In the details section, you will find the endpoint URL that you can paste into the URL in the HTTP Request (called Edge Function). Make sure to copy the Bearer YOUR_API_KEY as well and create a Header Auth to store it. You will find that in the Generic Auth Type under Header Auth. That will go in the Value section and the word 'Authorization' in the Name. You have now successfully completed the setup for the hybrid search."
},
"typeVersion": 1
},
{
"id": "76cf1951-f712-4d05-ab00-c5201a4bdf15",
"name": "Note Adhésive2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-7456,
-784
],
"parameters": {
"width": 656,
"height": 2416,
"content": "# documentHS\n\n\n-- Extensions\ncreate extension if not exists vector;\ncreate extension if not exists pg_trgm;\n\n-- Table\ncreate table if not exists documentsHS (\n id bigserial primary key,\n content text,\n metadata jsonb,\n embedding vector(1536),\n tokens tsvector generated always as (\n to_tsvector('english', coalesce(content, ''))\n ) stored\n);\n\n-- Indexes\ncreate index if not exists documentsHS_tokens_gin\n on documentsHS using gin (tokens);\n\ncreate index if not exists documentsHS_embedding_ivfflat\n on documentsHS using ivfflat (embedding vector_cosine_ops) with (lists = 100);\n\ncreate index if not exists documentsHS_metadata_gin\n on documentsHS using gin (metadata);\n\n-- ==========================================\n-- Single HYBRID function exposed via RPC\n-- ==========================================\ncreate or replace function public.match_documentshs_hybrid(\n query_embedding float4[], -- required; send as JSON array\n query_text text, -- required\n match_count int default 10,\n semantic_weight float default 0.5, -- 0..1 (higher = more semantic)\n filter jsonb default '{}' -- optional structured filter\n)\nreturns table (\n id bigint,\n content text,\n metadata jsonb,\n similarity double precision,\n keyword_rank double precision,\n hybrid_score double precision\n)\nlanguage sql\nstable\nas $$\n with base as (\n select\n d.id,\n d.content,\n d.metadata,\n (1 - (d.embedding <=> (query_embedding::vector(1536)))) as sim,\n ts_rank(d.tokens, plainto_tsquery('english', query_text)) as kw_rank\n from documentsHS d\n where d.metadata @> filter\n ),\n stats as (\n select max(sim) as max_sim, max(kw_rank) as max_kw from base\n )\n select\n b.id,\n b.content,\n b.metadata,\n b.sim as similarity,\n b.kw_rank as keyword_rank,\n (\n coalesce(case when s.max_sim > 0 then b.sim / s.max_sim else 0 end, 0) * semantic_weight\n +\n coalesce(case when s.max_kw > 0 then b.kw_rank / s.max_kw else 0 end, 0) * (1 - semantic_weight)\n ) as hybrid_score\n from base b cross join stats s\n where (b.sim > 0) or (b.kw_rank > 0)\n order by hybrid_score desc\n limit match_count;\n$$;\n\n-- Optional helpers\ncreate or replace function public.match_documentshs_vector_only(\n query_embedding float4[],\n match_count int default 10,\n filter jsonb default '{}'\n)\nreturns table (\n id bigint,\n content text,\n metadata jsonb,\n similarity double precision\n)\nlanguage sql\nstable\nas $$\n select\n d.id, d.content, d.metadata,\n (1 - (d.embedding <=> (query_embedding::vector(1536)))) as similarity\n from documentsHS d\n where d.metadata @> filter\n order by d.embedding <=> (query_embedding::vector(1536))\n limit match_count;\n$$;\n\ncreate or replace function public.match_documentshs_keyword_only(\n query_text text,\n match_count int default 10,\n filter jsonb default '{}'\n)\nreturns table (\n id bigint,\n content text,\n metadata jsonb,\n keyword_rank double precision\n)\nlanguage sql\nstable\nas $$\n select\n d.id, d.content, d.metadata,\n ts_rank(d.tokens, plainto_tsquery('english', query_text)) as keyword_rank\n from documentsHS d\n where d.metadata @> filter\n and plainto_tsquery('english', query_text) @@ d.tokens\n order by keyword_rank desc\n limit match_count;\n$$;\n\n-- Reload API schema\nselect pg_notify('pgrst', 'reload schema');"
},
"typeVersion": 1
},
{
"id": "ae127c8a-15e8-485a-913b-932e7a3f0f15",
"name": "Note Adhésive3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-6784,
-784
],
"parameters": {
"width": 592,
"height": 224,
"content": "# record_managerHS code\n\ncreate table public.record_managerHS (\n id bigint generated by default as identity not null,\n created_at timestamp with time zone not null default now(),\n gd_file_id text not null,\n hash text not null,\n constraint record_managerHS_pkey primary key (id)\n) TABLESPACE pg_default;"
},
"typeVersion": 1
},
{
"id": "4e8a1b14-2fd5-4dfc-89f4-73898134d384",
"name": "Fonction Edge",
"type": "n8n-nodes-base.httpRequest",
"position": [
-1552,
-544
],
"parameters": {
"url": "Your Edge Function URL Here",
"method": "POST",
"options": {
"redirect": {
"redirect": {}
}
},
"jsonBody": "={\n \"query_text\": \"{{ $('When Executed by Another Workflow').item.json.query }}\",\n \"query_embedding\": [{{ $json.data[0].embedding }}],\n \"match_count\": 5, \n \"full_text_weight\": 1.0,\n \"semantic_weight\": 1.0,\n \"rrf_k\": 50\n } ",
"sendBody": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth"
},
"credentials": {
"httpHeaderAuth": {
"id": "T59KJDlDMiYYary2",
"name": "Supabase CHRAG"
}
},
"typeVersion": 4.2,
"alwaysOutputData": true
},
{
"id": "cf18ef2b-6044-4526-9f0f-b1ec4d7a547d",
"name": "Appeler mon Sous-workflow",
"type": "n8n-nodes-base.executeWorkflow",
"position": [
-656,
336
],
"parameters": {
"options": {},
"workflowId": {
"__rl": true,
"mode": "list",
"value": "OB2T8YYdXtHcujuT",
"cachedResultName": "My Sub-workflow"
},
"workflowInputs": {
"value": {
"content": "={{ $json.content }}",
"file_id": "={{ $json.file_id }}",
"fileName": "={{ $json.fileName }}",
"documentSummary": "={{ $json.documentSummary }}"
},
"schema": [
{
"id": "content",
"display": true,
"removed": false,
"required": false,
"displayName": "content",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "documentSummary",
"display": true,
"removed": false,
"required": false,
"displayName": "documentSummary",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "file_id",
"display": true,
"removed": false,
"required": false,
"displayName": "file_id",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "fileName",
"display": true,
"removed": false,
"required": false,
"displayName": "fileName",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"content",
"documentSummary",
"file_id",
"fileName"
],
"attemptToConvertTypes": false,
"convertFieldsToString": true
}
},
"typeVersion": 1.2
},
{
"id": "61e693a0-bebc-4f32-8531-67110fc08e38",
"name": "Supabase Vector Store1",
"type": "@n8n/n8n-nodes-langchain.vectorStoreSupabase",
"position": [
1440,
336
],
"parameters": {
"mode": "insert",
"options": {},
"tableName": {
"__rl": true,
"mode": "list",
"value": "documentshs",
"cachedResultName": "documentshs"
}
},
"credentials": {
"supabaseApi": {
"id": "GZCrvWKfz1aQNVve",
"name": "Supabase - RAG"
}
},
"typeVersion": 1.3
},
{
"id": "7588feea-e4d2-4a67-91a8-2a35d4439293",
"name": "Embeddings OpenAI1",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
1440,
512
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "QsPyEUltWeliSiFb",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "db23a77d-2805-421d-a3c0-43de5a78e0a5",
"name": "Chargeur de Données par Défaut",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
1568,
528
],
"parameters": {
"options": {
"metadata": {
"metadataValues": [
{
"name": "file_id",
"value": "={{ $('Metadata').item.json.file_id }}"
},
{
"name": "motorsport_category",
"value": "={{ $('Metadata').item.json.motorsportCategory }}"
},
{
"name": "file_name",
"value": "={{ $('Metadata').item.json.fileName }}"
},
{
"name": "file_summary",
"value": "={{ $('Metadata').item.json.documentSummary }}"
}
]
}
},
"textSplittingMode": "custom"
},
"typeVersion": 1.1
},
{
"id": "fa1ce78e-ef3c-45e9-9b89-b6afa3e3a119",
"name": "Séparateur de Texte Caractère Récursif",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
1536,
656
],
"parameters": {
"options": {},
"chunkSize": 1400
},
"typeVersion": 1
},
{
"id": "c4771f8f-dabe-4815-8fe2-d862234cbec7",
"name": "Séparateur Récursif2",
"type": "n8n-nodes-base.code",
"position": [
-80,
336
],
"parameters": {
"mode": "runOnceForEachItem",
"jsCode": "const chunkSize = 1000;\nconst chunkOverlap = 200;\nconst text = $input.item.json.content.replace(/\\n/, '');\n\nconst chunks = [];\nlet remainingText = text;\n\nwhile (remainingText.length > 0) {\n let splitPoint;\n\n // Try splitting at paragraph level first\n splitPoint = remainingText.lastIndexOf(\"\\n\\n\", chunkSize);\n \n // If no paragraph split, try splitting at sentence level\n if (splitPoint === -1) {\n splitPoint = remainingText.lastIndexOf(\". \", chunkSize);\n }\n\n // If no sentence split, try splitting at word level\n if (splitPoint === -1) {\n splitPoint = remainingText.lastIndexOf(\" \", chunkSize);\n }\n\n // If still no split point, force cut at chunkSize\n if (splitPoint === -1 || splitPoint < chunkSize * 0.5) { \n splitPoint = chunkSize; // Hard split if no good split point\n }\n\n // Extract chunk and adjust remaining text with overlap\n let chunk = remainingText.substring(0, splitPoint).trim();\n chunks.push(chunk);\n\n // Move the pointer forward while keeping the overlap\n remainingText = remainingText.substring(Math.max(0, splitPoint - chunkOverlap)).trim();\n\n // Break if remaining text is too small to form another chunk\n if (remainingText.length < chunkSize * 0.2) {\n chunks.push(remainingText);\n break;\n }\n}\n\nreturn { chunks };"
},
"typeVersion": 2
},
{
"id": "0969dc28-0e90-47ad-9dde-b4425978a6eb",
"name": "Séparer",
"type": "n8n-nodes-base.splitOut",
"position": [
128,
336
],
"parameters": {
"options": {},
"fieldToSplitOut": "chunks"
},
"typeVersion": 1
},
{
"id": "b279aabb-d27f-44d4-9290-e0bf9abca567",
"name": "Préparer les Segments pour l'Embedding",
"type": "n8n-nodes-base.set",
"position": [
912,
336
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "caed5bb3-bd1e-475f-94ad-db0b73cdedf0",
"name": "text",
"type": "string",
"value": "={{ $json.text }} \n"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "2f58e5f1-afe1-4e34-8cf1-e02f932a2e99",
"name": "Métadonnées",
"type": "n8n-nodes-base.set",
"position": [
-288,
336
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "93527bdc-6f91-4942-b5da-d7d5f1a67f9d",
"name": "content",
"type": "string",
"value": "={{ $json.content }}"
},
{
"id": "15ac4402-e7a1-40fc-a45d-bafd8302358a",
"name": "documentSummary",
"type": "string",
"value": "={{ $json.documentSummary }}"
},
{
"id": "79781e9e-8d64-4ebb-b96a-5d9954e62939",
"name": "motorsportCategory",
"type": "string",
"value": "={{ $json.motorsportCategory }}"
},
{
"id": "ca42a5a1-d11b-4a1e-a9f1-b696d31b4251",
"name": "file_id",
"type": "string",
"value": "={{ $json.file_id }}"
},
{
"id": "97242570-a638-454d-8d5e-62a1eb6c8376",
"name": "fileName",
"type": "string",
"value": "={{ $json.fileName }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "02d36503-b3ad-451b-8f90-9ee50d9e3c53",
"name": "Attente",
"type": "n8n-nodes-base.wait",
"position": [
1104,
336
],
"webhookId": "9ddc5ae1-c2d9-4031-aa38-dafc7cdda091",
"parameters": {},
"typeVersion": 1.1
},
{
"id": "f0e1c571-d615-4942-a9cc-2529aa401cef",
"name": "Ajouter le Contexte",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
576,
336
],
"parameters": {
"text": "=<document> \n{{ $('Metadata').item.json.content}}\n</document> \n\nHere is the chunk we want to situate within the overall document:\n\n<chunk> \n{{ $('Loop Over Items2').item.json.chunks }}\n</chunk> \n\nPlease:\n- Provide a short and succinct **context** to situate this chunk within the document for improved search retrieval.\n- Return the **original chunk** exactly as provided unless a correction is necessary.\n- If the chunk contains an **incomplete number, percentage, or entity**, correct it using the full document.\n- If part of a **sentence is cut off**, reconstruct the missing words only if necessary for clarity.\n- If the chunk is part of a table, include the complete table entry to maintain data integrity\n- Do not add any additional explanations or formatting beyond the required output.\n\nFill in the following format:\n[succinct context] : [original chunk or corrected version if necessary]\n\nYour response should contain only the text that replaces these placeholders, without including the placeholder labels themselves.",
"promptType": "define"
},
"typeVersion": 1.5
},
{
"id": "9153a959-d4a9-4392-a072-8db62ecd4008",
"name": "OpenAI Modèle de Chat2",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
576,
544
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1-nano",
"cachedResultName": "gpt-4.1-nano"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "QsPyEUltWeliSiFb",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "25cb00db-559f-4eb0-baf6-3118fc6c6bf0",
"name": "Boucle sur les Éléments2",
"type": "n8n-nodes-base.splitInBatches",
"position": [
352,
336
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "756c06ae-1b66-44a0-b4a6-076856cf01b5",
"name": "Agrégateur2",
"type": "n8n-nodes-base.aggregate",
"position": [
544,
80
],
"parameters": {
"options": {},
"fieldsToAggregate": {
"fieldToAggregate": [
{}
]
}
},
"typeVersion": 1
},
{
"id": "1b2f5f20-f2f3-49c4-900a-d63d297b3fc2",
"name": "Note Adhésive5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-320,
224
],
"parameters": {
"width": 176,
"height": 280,
"content": "### Set up data\n"
},
"typeVersion": 1
},
{
"id": "a321d862-fcb5-4895-bb44-2f1d038c4614",
"name": "Note Adhésive13",
"type": "n8n-nodes-base.stickyNote",
"position": [
-112,
224
],
"parameters": {
"width": 356,
"height": 280,
"content": "### Chuck document into multiple chunks based chunk size"
},
"typeVersion": 1
},
{
"id": "dfb50197-9be2-4189-ab3c-0f11de6b62c1",
"name": "Note Adhésive21",
"type": "n8n-nodes-base.stickyNote",
"position": [
544,
224
],
"parameters": {
"width": 264,
"height": 280,
"content": "### Add context to each chunk\n"
},
"typeVersion": 1
},
{
"id": "48bbb8a8-56de-4e68-acf2-beb25a583145",
"name": "Note Adhésive22",
"type": "n8n-nodes-base.stickyNote",
"position": [
832,
224
],
"parameters": {
"width": 420,
"height": 284,
"content": "### Set up text chunks and add timer so create limits are not reached"
},
"typeVersion": 1
},
{
"id": "044811b8-f03e-4954-a6b0-1522030aa109",
"name": "Note Adhésive23",
"type": "n8n-nodes-base.stickyNote",
"position": [
1344,
224
],
"parameters": {
"width": 472,
"height": 576,
"content": "### Upsert into vector database."
},
"typeVersion": 1
},
{
"id": "57986be6-d5b8-47d8-8e14-f9be28282e59",
"name": "Note Adhésive24",
"type": "n8n-nodes-base.stickyNote",
"position": [
-352,
64
],
"parameters": {
"color": 3,
"width": 2192,
"height": 752,
"content": "# This is the Call My Sub-Workflow "
},
"typeVersion": 1
},
{
"id": "f28c07f0-e1d7-482f-bacc-bd2bc3ba011b",
"name": "Note Adhésive4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-6000,
-784
],
"parameters": {
"width": 752,
"height": 752,
"content": "# Workflow Summary\n\n### This automation keeps your Supabase vector database synchronized with documents stored in Google Drive, while also making the data contextual and vector based for better retrieval.\n\n### When a file is added or modified, the workflow extracts its text, splits it into smaller chunks, and enriches each chunk with contextual metadata (such as summaries and document details). It then generates embeddings using OpenAI and stores both the vector data and metadata in Supabase. If a file changes, the old records are replaced with updated, contextualized content.\n\n### The result is a continuously updated and context-aware vector database, enabling highly accurate hybrid search and retrieval. \n\n\n# To setup\n\n## 1. Connect Google Drive\n•\tCreate a Google Drive folder to watch.\n•\tConnect your Google Drive account in n8n and authorize access.\n•\tPoint the Google Drive Trigger node to this folder (new/modified files trigger the flow).\n\n## 2. Configure Supabase\n•\tPlease refer to the Setting Up Supabase Sticky Note. \n\n## 3. Connect OpenAI (or your embedding model)\n•\tAdd your OpenAI API key in n8n credentials.\n"
},
"typeVersion": 1
},
{
"id": "7c719413-7945-4e8e-9db2-02c6f3ee49c2",
"name": "Note Adhésive26",
"type": "n8n-nodes-base.stickyNote",
"position": [
-3808,
144
],
"parameters": {
"width": 150,
"height": 304,
"content": "### Loop over each item, as more than 1 file can be placed in the Google Drive"
},
"typeVersion": 1
},
{
"id": "f5d30b0f-d7cc-4574-9939-9a53e7b02d12",
"name": "Note Adhésive28",
"type": "n8n-nodes-base.stickyNote",
"position": [
-3568,
144
],
"parameters": {
"width": 160,
"height": 304,
"content": "### Download file"
},
"typeVersion": 1
},
{
"id": "f9c3a219-dbf0-470a-a54a-2c5775da45c4",
"name": "Note Adhésive29",
"type": "n8n-nodes-base.stickyNote",
"position": [
-3376,
144
],
"parameters": {
"width": 160,
"height": 304,
"content": "### Extract text from pdf"
},
"typeVersion": 1
},
{
"id": "aced0ee1-a1d5-40fd-b866-c2640136802e",
"name": "Note Adhésive30",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1840,
-96
],
"parameters": {
"width": 176,
"height": 304,
"content": "### Create new record in record manager since file is new and doesn't exist in database"
},
"typeVersion": 1
},
{
"id": "ae132431-fb89-45b5-9849-96812a46dcfd",
"name": "Note Adhésive25",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2592,
-832
],
"parameters": {
"width": 336,
"height": 208,
"content": "## AI Agent to communicate with the database"
},
"typeVersion": 1
},
{
"id": "c8d17104-e110-453d-97ca-e8e79bf589c1",
"name": "Embedding",
"type": "n8n-nodes-base.httpRequest",
"position": [
-1792,
-544
],
"parameters": {
"url": "https://api.openai.com/v1/embeddings",
"method": "POST",
"options": {},
"sendBody": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "input",
"value": "={{ $json.query }}"
},
{
"name": "model",
"value": "text-embedding-3-small"
}
]
},
"genericAuthType": "httpHeaderAuth"
},
"credentials": {
"httpHeaderAuth": {
"id": "IZ2NWEGrJPwf73xf",
"name": "Openai"
}
},
"typeVersion": 4.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "60d22f47-01bc-4326-b282-0d742ef48480",
"connections": {
"81fc8e77-f1fb-4914-87b7-489bdcdf3f9d": {
"main": [
[
{
"node": "9561c9dd-0b82-4cdb-bed0-a3307d206394",
"type": "main",
"index": 0
}
]
]
},
"02d36503-b3ad-451b-8f90-9ee50d9e3c53": {
"main": [
[
{
"node": "61e693a0-bebc-4f32-8531-67110fc08e38",
"type": "main",
"index": 0
}
]
]
},
"39445058-69b3-4bf1-8236-99a4a55e7d86": {
"main": [
[
{
"node": "cc825e4c-1f68-4688-8e32-5d08b3aab1ac",
"type": "main",
"index": 0
}
],
[
{
"node": "10062467-974d-4103-aeb3-bff32d0c6e3f",
"type": "main",
"index": 0
}
],
[
{
"node": "467f3d3b-8727-413b-aa8d-7547ac7d8a68",
"type": "main",
"index": 0
}
]
]
},
"2f58e5f1-afe1-4e34-8cf1-e02f932a2e99": {
"main": [
[
{
"node": "c4771f8f-dabe-4815-8fe2-d862234cbec7",
"type": "main",
"index": 0
}
]
]
},
"df98c1e9-b29c-4558-bbe4-a8925fd5a2f1": {
"main": [
[
{
"node": "e145b247-04d6-40f9-b3ab-7ad034aa0a31",
"type": "main",
"index": 0
}
]
]
},
"f0c2dcd5-5fe8-4968-a510-0f7d997d3b2f": {
"main": [
[
{
"node": "40aa27bb-4577-4d2d-abc4-0ed103fc0cbd",
"type": "main",
"index": 0
}
]
]
},
"c8d17104-e110-453d-97ca-e8e79bf589c1": {
"main": [
[
{
"node": "4e8a1b14-2fd5-4dfc-89f4-73898134d384",
"type": "main",
"index": 0
}
]
]
},
"0969dc28-0e90-47ad-9dde-b4425978a6eb": {
"main": [
[
{
"node": "25cb00db-559f-4eb0-baf6-3118fc6c6bf0",
"type": "main",
"index": 0
}
]
]
},
"31cc03e7-50db-4c6d-b266-136225457218": {
"main": [
[
{
"node": "0c76dd9b-be10-4fdd-8536-ea3eb75a6cba",
"type": "main",
"index": 0
}
]
]
},
"f0e1c571-d615-4942-a9cc-2529aa401cef": {
"main": [
[
{
"node": "b279aabb-d27f-44d4-9290-e0bf9abca567",
"type": "main",
"index": 0
}
]
]
},
"317048f7-1423-4922-ac19-ad1b79152359": {
"main": [
[
{
"node": "3e9028df-ff29-4599-9ae9-c08a3811f047",
"type": "main",
"index": 0
}
]
]
},
"e145b247-04d6-40f9-b3ab-7ad034aa0a31": {
"main": [
[
{
"node": "27074acb-2256-4b79-a093-df35755ca0e8",
"type": "main",
"index": 0
}
]
]
},
"c41851a0-ba52-432d-ae00-752bb630cead": {
"main": [
[
{
"node": "258005cc-104e-4e31-96f0-a3fae138da93",
"type": "main",
"index": 0
}
]
]
},
"3c285b17-d4f0-4e8e-809b-38be2a5ede94": {
"ai_memory": [
[
{
"node": "c1422e6a-289f-4499-b19b-62df452010b2",
"type": "ai_memory",
"index": 0
}
]
]
},
"03516980-317e-483d-9471-6cf9e3148415": {
"main": [
[
{
"node": "258005cc-104e-4e31-96f0-a3fae138da93",
"type": "main",
"index": 0
}
]
]
},
"56bc70d8-aba3-4534-be6b-05cce089505a": {
"main": [
[
{
"node": "7d2d4e71-ce5f-4e08-a5fb-2ca01d17e6a6",
"type": "main",
"index": 0
}
]
]
},
"467f3d3b-8727-413b-aa8d-7547ac7d8a68": {
"main": [
[],
[
{
"node": "317048f7-1423-4922-ac19-ad1b79152359",
"type": "main",
"index": 0
}
]
]
},
"258005cc-104e-4e31-96f0-a3fae138da93": {
"main": [
[],
[
{
"node": "84ac45bc-27c8-4fce-8e03-be8c9cf18fe8",
"type": "main",
"index": 0
}
]
]
},
"25cb00db-559f-4eb0-baf6-3118fc6c6bf0": {
"main": [
[
{
"node": "756c06ae-1b66-44a0-b4a6-076856cf01b5",
"type": "main",
"index": 0
}
],
[
{
"node": "f0e1c571-d615-4942-a9cc-2529aa401cef",
"type": "main",
"index": 0
}
]
]
},
"3e9028df-ff29-4599-9ae9-c08a3811f047": {
"main": [
[
{
"node": "df98c1e9-b29c-4558-bbe4-a8925fd5a2f1",
"type": "main",
"index": 0
}
]
]
},
"8a624394-5019-4a67-a31c-c56fad7b1406": {
"ai_languageModel": [
[
{
"node": "c1422e6a-289f-4499-b19b-62df452010b2",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"7588feea-e4d2-4a67-91a8-2a35d4439293": {
"ai_embedding": [
[
{
"node": "61e693a0-bebc-4f32-8531-67110fc08e38",
"type": "ai_embedding",
"index": 0
}
]
]
},
"478f6320-0c37-478c-8321-8083e5d903fe": {
"ai_languageModel": [
[
{
"node": "56bc70d8-aba3-4534-be6b-05cce089505a",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"9153a959-d4a9-4392-a072-8db62ecd4008": {
"ai_languageModel": [
[
{
"node": "f0e1c571-d615-4942-a9cc-2529aa401cef",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"5da16ea7-5c2c-4326-8069-7228ea20041f": {
"ai_tool": [
[
{
"node": "c1422e6a-289f-4499-b19b-62df452010b2",
"type": "ai_tool",
"index": 0
}
]
]
},
"a791c6a2-1311-40cc-837e-c875425774cc": {
"main": [
[
{
"node": "467f3d3b-8727-413b-aa8d-7547ac7d8a68",
"type": "main",
"index": 0
}
]
]
},
"db23a77d-2805-421d-a3c0-43de5a78e0a5": {
"ai_document": [
[
{
"node": "61e693a0-bebc-4f32-8531-67110fc08e38",
"type": "ai_document",
"index": 0
}
]
]
},
"c4771f8f-dabe-4815-8fe2-d862234cbec7": {
"main": [
[
{
"node": "0969dc28-0e90-47ad-9dde-b4425978a6eb",
"type": "main",
"index": 0
}
]
]
},
"cf18ef2b-6044-4526-9f0f-b1ec4d7a547d": {
"main": [
[
{
"node": "467f3d3b-8727-413b-aa8d-7547ac7d8a68",
"type": "main",
"index": 0
}
]
]
},
"27074acb-2256-4b79-a093-df35755ca0e8": {
"main": [
[
{
"node": "39445058-69b3-4bf1-8236-99a4a55e7d86",
"type": "main",
"index": 0
}
]
]
},
"7d2d4e71-ce5f-4e08-a5fb-2ca01d17e6a6": {
"main": [
[
{
"node": "cf18ef2b-6044-4526-9f0f-b1ec4d7a547d",
"type": "main",
"index": 0
}
]
]
},
"40aa27bb-4577-4d2d-abc4-0ed103fc0cbd": {
"main": [
[
{
"node": "56bc70d8-aba3-4534-be6b-05cce089505a",
"type": "main",
"index": 0
}
]
]
},
"84ac45bc-27c8-4fce-8e03-be8c9cf18fe8": {
"main": [
[
{
"node": "81fc8e77-f1fb-4914-87b7-489bdcdf3f9d",
"type": "main",
"index": 0
}
]
]
},
"61e693a0-bebc-4f32-8531-67110fc08e38": {
"main": [
[
{
"node": "25cb00db-559f-4eb0-baf6-3118fc6c6bf0",
"type": "main",
"index": 0
}
]
]
},
"10062467-974d-4103-aeb3-bff32d0c6e3f": {
"main": [
[
{
"node": "f0c2dcd5-5fe8-4968-a510-0f7d997d3b2f",
"type": "main",
"index": 0
}
]
]
},
"9561c9dd-0b82-4cdb-bed0-a3307d206394": {
"main": [
[
{
"node": "31cc03e7-50db-4c6d-b266-136225457218",
"type": "main",
"index": 0
}
]
]
},
"c99060a8-fe04-44c8-86ad-76ad9c0f2f6c": {
"ai_outputParser": [
[
{
"node": "56bc70d8-aba3-4534-be6b-05cce089505a",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"efb0bd4c-0b6d-4b96-8e8d-d1b511174151": {
"main": [
[
{
"node": "c1422e6a-289f-4499-b19b-62df452010b2",
"type": "main",
"index": 0
}
]
]
},
"b279aabb-d27f-44d4-9290-e0bf9abca567": {
"main": [
[
{
"node": "02d36503-b3ad-451b-8f90-9ee50d9e3c53",
"type": "main",
"index": 0
}
]
]
},
"cc825e4c-1f68-4688-8e32-5d08b3aab1ac": {
"main": [
[
{
"node": "56bc70d8-aba3-4534-be6b-05cce089505a",
"type": "main",
"index": 0
}
]
]
},
"fa1ce78e-ef3c-45e9-9b89-b6afa3e3a119": {
"ai_textSplitter": [
[
{
"node": "db23a77d-2805-421d-a3c0-43de5a78e0a5",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"3024e04e-86c4-43d6-819d-22f45ef40750": {
"main": [
[
{
"node": "c8d17104-e110-453d-97ca-e8e79bf589c1",
"type": "main",
"index": 0
}
]
]
},
"0c76dd9b-be10-4fdd-8536-ea3eb75a6cba": {
"main": [
[
{
"node": "c41851a0-ba52-432d-ae00-752bb630cead",
"type": "main",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Avancé - RAG IA, IA Multimodale
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Michael Taleb
@michaeltalebn8n developer helping businesses save time and scale by automating complex business processes with n8n and smart integrations.
Partager ce workflow