Investigador de red de IA dinámico: de texto plano a CSV personalizado

Avanzado

Este es unMiscellaneous, AI Summarization, Multimodal AIflujo de automatización del dominio deautomatización que contiene 16 nodos.Utiliza principalmente nodos como Set, Code, SplitOut, FormTrigger, HttpRequest. Investigador dinámico de red de IA que convierte texto plano a CSV personalizado usando GPT-4 y Linkup

Requisitos previos
  • Pueden requerirse credenciales de autenticación para la API de destino
  • Clave de API de OpenAI
Vista previa del flujo de trabajo
Visualización de las conexiones entre nodos, con soporte para zoom y panorámica
Exportar flujo de trabajo
Copie la siguiente configuración JSON en n8n para importar y usar este flujo de trabajo
{
  "nodes": [
    {
      "id": "7df78b4d-8c66-4353-a87e-7b151913f856",
      "name": "Al enviar el formulario",
      "type": "n8n-nodes-base.formTrigger",
      "position": [
        0,
        16
      ],
      "webhookId": "0d4374b6-84a6-4a71-834b-40dd3d3e3adf",
      "parameters": {
        "options": {},
        "formTitle": "New research",
        "formFields": {
          "values": [
            {
              "fieldType": "textarea",
              "fieldLabel": "Describe your research",
              "requiredField": true
            }
          ]
        }
      },
      "typeVersion": 2.3
    },
    {
      "id": "3c8ad682-a662-4266-bdb5-732f6bb8614c",
      "name": "Modelo de chat OpenAI",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        304,
        240
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-5-chat-latest",
          "cachedResultName": "gpt-5-chat-latest"
        },
        "options": {
          "responseFormat": "json_object"
        }
      },
      "credentials": {
        "openAiApi": {
          "id": "dMiSy27YCK6c6rra",
          "name": "Duv's OpenAI"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "074eea9f-b07e-4677-8b58-75b92155df44",
      "name": "Dividir",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        1008,
        16
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "List"
      },
      "typeVersion": 1
    },
    {
      "id": "e9d5daa7-aa07-4873-888f-b704cf0d6d7c",
      "name": "Iterar sobre elementos",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        1344,
        16
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "baf2d169-9593-4ec2-9415-1ed45cb303d0",
      "name": "Obtener nombre y valor del objeto",
      "type": "n8n-nodes-base.set",
      "position": [
        1584,
        256
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "3de0459c-a3bf-4db0-94cc-ce007fa5db55",
              "name": "={{ $('Prepare prompts and schema').item.json.ObjectName }}",
              "type": "string",
              "value": "={{ $json.PropertyValue }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "84f376a1-3ab5-4bab-b962-357e4f57854c",
      "name": "Nota adhesiva",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        640,
        -176
      ],
      "parameters": {
        "color": 5,
        "width": 288,
        "height": 384,
        "content": "## AI web-search to find all items that match the conditions\n\nDon't forget to connect your Linkup credentials."
      },
      "typeVersion": 1
    },
    {
      "id": "53b2a08a-f61f-4c60-8c25-9edc8731a9d4",
      "name": "Consultar Linkup para encontrar la lista",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        736,
        16
      ],
      "parameters": {
        "url": "https://api.linkup.so/v1/search",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "authentication": "genericCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "q",
              "value": "={{ $json.discoveryQuery }}"
            },
            {
              "name": "depth",
              "value": "deep"
            },
            {
              "name": "outputType",
              "value": "structured"
            },
            {
              "name": "structuredOutputSchema",
              "value": "={{ JSON.stringify($json.discoverySchema) }}"
            },
            {
              "name": "includeImages",
              "value": "false"
            }
          ]
        },
        "genericAuthType": "httpBearerAuth"
      },
      "credentials": {
        "httpBearerAuth": {
          "id": "W7AgeoVOv60DlvyS",
          "name": "Linkup - web search AI"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "74957f1e-01ba-4cfd-a5e7-2fec11e0a7ad",
      "name": "Preparar JSON final para ese elemento",
      "type": "n8n-nodes-base.code",
      "position": [
        2128,
        448
      ],
      "parameters": {
        "jsCode": "// Get the first key-value from the \"Get object name and value\" node\n// Replace 'Get_object_name_and_value' with the actual name of your node\nconst firstNodeData = $node[\"Get object name and value\"].json;\n\n// Get the previous node data (the one with multiple keys)\nconst previousNodeData = items[0].json;\n\n// Create the output object\nconst output = {};\n\n// Add the first key-value pair from the first node\n// Assuming the node only has one key-value pair\nconst firstKey = Object.keys(firstNodeData)[0];\noutput[firstKey] = String(firstNodeData[firstKey]);\n\n// Add all key-value pairs from the previous node, stringified\nfor (const [key, value] of Object.entries(previousNodeData)) {\n    if (Array.isArray(value)) {\n        output[key] = value.join(', ');\n    } else if (typeof value === 'object' && value !== null) {\n        output[key] = JSON.stringify(value);\n    } else {\n        output[key] = String(value);\n    }\n}\n\n// Return the new item\nreturn [{ json: output }];\n"
      },
      "typeVersion": 2
    },
    {
      "id": "d170bc2a-68a3-497c-803b-78f904ec9351",
      "name": "Consultar Linkup para encontrar todas las propiedades de este elemento",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1840,
        256
      ],
      "parameters": {
        "url": "https://api.linkup.so/v1/search",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "authentication": "genericCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "q",
              "value": "=For item: {{ $('Loop Over Items').item.json.PropertyValue }}\n{{ $('Prepare prompts and schema').item.json.enrichmentQuery }}"
            },
            {
              "name": "depth",
              "value": "standard"
            },
            {
              "name": "outputType",
              "value": "structured"
            },
            {
              "name": "structuredOutputSchema",
              "value": "={{ JSON.stringify($('Prepare prompts and schema').item.json.enrichmentSchema) }}"
            },
            {
              "name": "includeImages",
              "value": "false"
            }
          ]
        },
        "genericAuthType": "httpBearerAuth"
      },
      "credentials": {
        "httpBearerAuth": {
          "id": "W7AgeoVOv60DlvyS",
          "name": "Linkup - web search AI"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "c4b50e76-3ff0-4d07-830e-7141a6d90d4d",
      "name": "Preparar prompts y esquema",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        256,
        16
      ],
      "parameters": {
        "text": "={{ $json['Describe your research'] }}",
        "batching": {},
        "messages": {
          "messageValues": [
            {
              "message": "=# Role\n\nYou are an AI research strategy generator for an automated research workflow. Your first task is to identify the primary **object** of the user's research (e.g., Company, Person, City, Product).\n\nYou will always return a valid JSON object with **five** keys, starting with `ObjectName`:\n\n{\n  \"ObjectName\": \"string\",\n  \"discoveryQuery\": \"string\",\n  \"discoverySchema\": { ... },\n  \"enrichmentQuery\": \"string\",\n  \"enrichmentSchema\": { ... }\n}\n\n\n## Step 0: Identify the ObjectName\n\n**Goal**: First, identify the core subject of the user's request and create a simple label for it.\n\n  * Based on the user's prompt, determine the primary object being researched.\n\n  * The **ObjectName** must be a simple, **singular noun** (e.g., \"Company\", not \"Companies\").\n\n  * This name should be a general category, not overly specific.\n\n  * **Examples**:\n\n      * If the request is `\"List 50 German fashion companies...\"`, the object is a company. So, **ObjectName** should be `\"Company\"`.\n      * If the request is `\"Find 25 CEOs of technology companies...\"`, the object is a person. So, **ObjectName** should be `\"Person\"`.\n      * If the request is `\"Provide 25 HEX color codes...\"`, the object is a color. So, **ObjectName** should be `\"Color\"`.\n\n\n## Step 1: Object Discovery\n\n**Goal**: Define **what to search for** and how to structure the list of results into a predictable array.\n\n  * **`discoveryQuery`**:\n\n      * This is a single sentence prompt that describes EXACTLY what list of items needs to be found.\n      * It must be explicit, concise, and human-readable.\n      * It must include a mention \"if not enough relevant items have been found, don't force adding the requested number, quality prevails\"\n\n  * **`discoverySchema`**:\n\n      * A JSON Schema that forces the output into a specific, non-changing structure.\n\n      * The structure is **fixed** and must be used exactly as shown below.\n\n      * **CRUCIAL**: You must set the `\"description\"` for `\"PropertyValue\"` to tell the AI what content to find. This description should correspond to the unique identifier of the `ObjectName` you identified in Step 0 (e.g., 'The official name of the company').\n\n      * **Fixed Structure Example**:\n\n        {\n          \"type\": \"object\",\n          \"properties\": {\n            \"List\": {\n              \"type\": \"array\",\n              \"items\": {\n                \"type\": \"object\",\n                \"properties\": {\n                  \"PropertyValue\": {\n                    \"type\": \"string\",\n                    \"description\": \"A clear description of what this value should be. E.g., 'The official name of the company'.\"\n                  }\n                },\n                \"required\": [\"PropertyValue\"]\n              }\n            }\n          },\n          \"required\": [\"List\"]\n        }\n\n\n### Step 2: Object Enrichment\n\n**Goal**: For each item discovered in Step 1, define **what extra information to research**. If not specified by the user, aim for 5-8 properties that make the most sense. Mention them in the enrichmentQuery, and give them easily readable names in the enrichmentSchema (e.g., prefer \"Company Name\" over \"companyName\").\n\n  * **`enrichmentQuery`**:\n\n      * A single sentence prompt for Linkup. Refer to the object generically based on your identified `ObjectName` (e.g., \"For that company...\", \"For that person...\"). The actual name of the item will be provided contextually, so do not use a placeholder.\n\n  * **`enrichmentSchema`**:\n\n      * A detailed JSON Schema object that defines all the fields to capture for each object, based on the user's goal.\n      * The root must be `\"type\": \"object\"`.\n      * All properties must be required (see example later)\n\n\n\n## Output Format\n\n  * Return a single, valid **JSON object** with five keys: `\"ObjectName\"`, `\"discoveryQuery\"`, `\"discoverySchema\"`, `\"enrichmentQuery\"`, and `\"enrichmentSchema\"`.\n  * Do not stringify the schemas; they must remain as JSON objects.\n  * Do not include explanations or any text outside the final JSON.\n\n\n### Example JSON Output\n\nHere is a complete example for the request: \"I need 50 german companies in fashion industry between 40 and 130 employees...\"\n\n{\n  \"ObjectName\": \"Company\",\n  \"discoveryQuery\": \"List 50 German fashion industry companies with 40 to 130 employees. If not enough relevant companies have been found, don't force adding the requested number, quality prevails\",\n  \"discoverySchema\": {\n    \"type\": \"object\",\n    \"properties\": {\n      \"List\": {\n        \"type\": \"array\",\n        \"items\": {\n          \"type\": \"object\",\n          \"properties\": {\n            \"PropertyValue\": {\n              \"type\": \"string\",\n              \"description\": \"The official name of the German fashion company.\"\n            }\n          },\n          \"required\": [\"PropertyValue\"]\n        }\n      }\n    },\n    \"required\": [\"List\"]\n  },\n  \"enrichmentQuery\": \"For that company, provide detailed business information useful for personalized outreach including its Website, employee count, headquarters, key contacts, and recent news.\",\n  \"enrichmentSchema\": {\n    \"type\": \"object\",\n    \"properties\": {\n      \"Company Name\": {\n        \"type\": \"string\",\n        \"description\": \"The official company name\"\n      },\n      \"Website\": {\n        \"type\": \"string\",\n        \"description\": \"Official website URL\"\n      },\n      \"Employee Count\": {\n        \"type\": \"integer\",\n        \"description\": \"Number of employees\"\n      },\n      \"Headquarters\": {\n        \"type\": \"string\",\n        \"description\": \"Headquarters location\"\n      },\n      \"Key Contacts\": {\n        \"type\": \"array\",\n        \"items\": {\n          \"type\": \"string\"\n        },\n        \"description\": \"List of key contact persons (e.g. CEO, Marketing Head)\"\n      },\n      \"Recent News\": {\n        \"type\": \"string\",\n        \"description\": \"Any recent news or updates about the company for outreach personalization\"\n      }\n    },\n    \"required\": [\n  \"Company Name\",\n  \"Website\",\n  \"Employee Count\",\n  \"Headquarters\",\n  \"Key Contacts\",\n  \"Recent News\"\n    ]\n  }\n}"
            }
          ]
        },
        "promptType": "define"
      },
      "typeVersion": 1.7
    },
    {
      "id": "ef93d5c6-48bc-4afb-80e9-5511c4143d7f",
      "name": "Convertir a CSV",
      "type": "n8n-nodes-base.convertToFile",
      "position": [
        1664,
        -400
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "fa8be6ed-db4f-43a6-b5cf-b33ff400f266",
      "name": "Nota adhesiva2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -512,
        -416
      ],
      "parameters": {
        "width": 448,
        "height": 752,
        "content": "# **Dynamic AI Web Researcher**\n\nThis workflow turns any plain-text research request into a custom-built, structured spreadsheet (CSV). It uses a \"thinker\" AI to plan the research and a \"doer\" AI to execute it.\n\n## **How it works**\n1.  **Plan:** An AI \"thinker\" analyzes your request and dynamically creates a custom plan, deciding on the perfect spreadsheet columns for your goal.\n2.  **Discover:** An AI \"researcher\" (Linkup) performs a deep web search to find an initial list of items based on the plan.\n3.  **Enrich:** It then loops through each item, performing fast web searches to fill in all the detailed columns defined by the planner.\n4.  **Output:** The final, structured data is converted into a CSV file.\n\n## **How to use**\n1.  **Connect your AI provider** to the **OpenAI Chat Model** node.\n2.  **Connect Linkup:** Add your **Linkup API Key** to the two HTTP Request nodes that query Linkup.\n3.  **Run:** Activate the workflow and use the form to submit a research request.\n\n\n\n\n*This template was created by Guillaume Duvernay*"
      },
      "typeVersion": 1
    },
    {
      "id": "04ecb528-4934-4565-8677-e69917a56f58",
      "name": "Nota adhesiva3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        192,
        -176
      ],
      "parameters": {
        "color": 6,
        "width": 352,
        "height": 576,
        "content": "## The architect brain\n\nThis AI step defines how the output of the research will look like (CSV schema), and how to get there (prompts).\n\nMake sure to connect a powerful AI model"
      },
      "typeVersion": 1
    },
    {
      "id": "48f2305c-5ef5-41c0-8705-37a8582502e5",
      "name": "Nota adhesiva1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1760,
        64
      ],
      "parameters": {
        "color": 7,
        "width": 288,
        "height": 384,
        "content": "## AI web-search to find all information about one item\n\nDon't forget to connect your Linkup credentials."
      },
      "typeVersion": 1
    },
    {
      "id": "29343905-2b7c-4d34-8455-066039945a6a",
      "name": "Nota adhesiva4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1216,
        -112
      ],
      "parameters": {
        "color": 5,
        "width": 1088,
        "height": 816,
        "content": "## Running a loop on each item\n\nWithin this loop, each item from the list will go through an AI web search that will find all the values for the properties that the initial AI step had identified. These values will be cleaned and prepared before the outcome gets converted into a CSV."
      },
      "typeVersion": 1
    },
    {
      "id": "2cc1bca9-29ba-4d79-9e3f-6217c39d495a",
      "name": "Nota adhesiva5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1520,
        -592
      ],
      "parameters": {
        "color": 4,
        "width": 384,
        "height": 352,
        "content": "## The output: A custom CSV\n\nThis CSV contains one row per item that was found, and each column is a property that got enriched thanks to the Web AI search. "
      },
      "typeVersion": 1
    }
  ],
  "connections": {
    "074eea9f-b07e-4677-8b58-75b92155df44": {
      "main": [
        [
          {
            "node": "e9d5daa7-aa07-4873-888f-b704cf0d6d7c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e9d5daa7-aa07-4873-888f-b704cf0d6d7c": {
      "main": [
        [
          {
            "node": "ef93d5c6-48bc-4afb-80e9-5511c4143d7f",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "baf2d169-9593-4ec2-9415-1ed45cb303d0",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "c4b50e76-3ff0-4d07-830e-7141a6d90d4d",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "7df78b4d-8c66-4353-a87e-7b151913f856": {
      "main": [
        [
          {
            "node": "c4b50e76-3ff0-4d07-830e-7141a6d90d4d",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "baf2d169-9593-4ec2-9415-1ed45cb303d0": {
      "main": [
        [
          {
            "node": "d170bc2a-68a3-497c-803b-78f904ec9351",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c4b50e76-3ff0-4d07-830e-7141a6d90d4d": {
      "main": [
        [
          {
            "node": "53b2a08a-f61f-4c60-8c25-9edc8731a9d4",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "53b2a08a-f61f-4c60-8c25-9edc8731a9d4": {
      "main": [
        [
          {
            "node": "074eea9f-b07e-4677-8b58-75b92155df44",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "74957f1e-01ba-4cfd-a5e7-2fec11e0a7ad": {
      "main": [
        [
          {
            "node": "e9d5daa7-aa07-4873-888f-b704cf0d6d7c",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d170bc2a-68a3-497c-803b-78f904ec9351": {
      "main": [
        [
          {
            "node": "74957f1e-01ba-4cfd-a5e7-2fec11e0a7ad",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Preguntas frecuentes

¿Cómo usar este flujo de trabajo?

Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.

¿En qué escenarios es adecuado este flujo de trabajo?

Avanzado - Varios, Resumen de IA, IA Multimodal

¿Es de pago?

Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.

Flujos de trabajo relacionados recomendados

Crear artículos de investigación usando planificación de IA, búsqueda de Linkup y GPT-5
Crear artículos con respaldo de investigación usando planificación de IA, búsqueda Linkup y GPT-5
Set
Split Out
Aggregate
+
Set
Split Out
Aggregate
19 NodosGuillaume Duvernay
Creación de contenido
Registrar y respaldar automáticamente flujos de trabajo usando GPT-4 y Airtable
Usar GPT-4 y Airtable para registrar y respaldar automáticamente flujos de trabajo
If
N8n
Set
+
If
N8n
Set
38 NodosGuillaume Duvernay
Resumen de IA
Análisis inteligente diario de grupos de WhatsApp: Análisis con GPT-4.1 y transcripción de mensajes de voz
Análisis inteligente diario de grupos de WhatsApp: análisis con GPT-4.1 y transcripción de mensajes de voz
If
Set
Code
+
If
Set
Code
52 NodosDaniel Lianes
Varios
Usar Lookio y OpenAI GPT para crear artículos basados en hechos desde fuentes de conocimiento
Crear artículos basados en hechos a partir de fuentes de conocimiento utilizando Lookio y OpenAI GPT
Set
Split Out
Aggregate
+
Set
Split Out
Aggregate
19 NodosGuillaume Duvernay
Creación de contenido
Usar Super RAG y GPT-5 para crear artículos basados en hechos desde fuentes de conocimiento
Crear artículos basados en hechos a partir de fuentes de conocimiento utilizando Super RAG y GPT-5
Set
Split Out
Aggregate
+
Set
Split Out
Aggregate
19 NodosGuillaume Duvernay
RAG de IA
演示 - 分享模板 - desde职位描述构建候选人短名单
AI招聘流程:usoApolloyAirtabledesde职位a候选人短名单
Set
Limit
Switch
+
Set
Limit
Switch
40 NodosFabian Herhold
Varios
Información del flujo de trabajo
Nivel de dificultad
Avanzado
Número de nodos16
Categoría3
Tipos de nodos10
Descripción de la dificultad

Adecuado para usuarios avanzados, flujos de trabajo complejos con 16+ nodos

Autor
Guillaume Duvernay

Guillaume Duvernay

@duv

AI and automation expert

Enlaces externos
Ver en n8n.io

Compartir este flujo de trabajo

Categorías

Categorías: 34