Verificación automatizada de cumplimiento de documentos

Avanzado

Este es unAI RAG, Multimodal AIflujo de automatización del dominio deautomatización que contiene 22 nodos.Utiliza principalmente nodos como Code, Webhook, HttpRequest, Code, Agent. Verificación automatizada de cumplimiento de documentos combinando IA y base de datos vectorial

Requisitos previos
  • Punto final de HTTP Webhook (n8n generará automáticamente)
  • Pueden requerirse credenciales de autenticación para la API de destino
  • Información de conexión del servidor Qdrant
Vista previa del flujo de trabajo
Visualización de las conexiones entre nodos, con soporte para zoom y panorámica
Exportar flujo de trabajo
Copie la siguiente configuración JSON en n8n para importar y usar este flujo de trabajo
{
  "meta": {
    "instanceId": "3fe077479b444bdcfece7286c569713d43d4aa028a4ec663ca89692157527a79",
    "templateCredsSetupCompleted": true
  },
  "nodes": [
    {
      "id": "22c5f212-aeca-46d1-a684-41147efc6547",
      "name": "Carga de Documento de Auditoría",
      "type": "n8n-nodes-base.webhook",
      "position": [
        -464,
        -272
      ],
      "webhookId": "ede6ddb4-91a5-4a3c-9f91-5600939bf5a8",
      "parameters": {
        "path": "creatorhub/audit-document-upload",
        "options": {},
        "httpMethod": "POST",
        "responseMode": "lastNode"
      },
      "typeVersion": 2
    },
    {
      "id": "bf8f5941-db69-4db3-b344-183e23b010ca",
      "name": "Envío de Procedimiento",
      "type": "n8n-nodes-base.webhook",
      "position": [
        -464,
        288
      ],
      "webhookId": "9bbf9e5b-1582-40c2-9324-6927f62ca31d",
      "parameters": {
        "path": "creatorhub/procedure-validate",
        "options": {},
        "httpMethod": "POST",
        "responseMode": "responseNode"
      },
      "typeVersion": 2
    },
    {
      "id": "35b34dc7-27f0-446d-b052-1bf7eb990ce2",
      "name": "Obtener Documento (Microsoft Graph)",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -256,
        -272
      ],
      "parameters": {
        "url": "={{$env.GRAPH_BASE_URL || \"https://graph.microsoft.com\"}}/v1.0/drives/{{$json.body.spDriveId}}/items/{{$json.body.spDocumentId}}/content",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "a9520145-7f98-4f22-a477-cb24caa599b2",
      "name": "Eliminar Vectores de Documentos Antiguos",
      "type": "@n8n/n8n-nodes-langchain.code",
      "position": [
        0,
        -272
      ],
      "parameters": {
        "code": {
          "execute": {
            "code": "const { QdrantVectorStore } = require(\"@langchain/qdrant\");\nconst { OllamaEmbeddings } = require(\"@langchain/community/embeddings/ollama\");\n\nconst OLLAMA_BASE_URL = $env.OLLAMA_BASE_URL || \"http://localhost:11434\";\nconst QDRANT_BASE_URL = $env.QDRANT_BASE_URL || \"http://localhost:6333\";\nconst QDRANT_COLLECTION = $env.QDRANT_COLLECTION || \"audit-docs\";\nconst EMBED_MODEL = $env.OLLAMA_EMBED_MODEL || \"nomic-embed-text\";\n\nconst embeddings = new OllamaEmbeddings({ model: EMBED_MODEL, baseUrl: OLLAMA_BASE_URL });\nconst vectorStore = await QdrantVectorStore.fromExistingCollection(embeddings, { url: QDRANT_BASE_URL, collectionName: QDRANT_COLLECTION });\n\nconst items = this.getInputData();\nconst fileIdToDelete = items[0].json.body.spDocumentId;\n\nconst filter = { must: [ { key: \"metadata.file_id\", match: { value: fileIdToDelete } } ] };\n\ntry {\n  if (vectorStore?.client?.delete) {\n    await vectorStore.client.delete(QDRANT_COLLECTION, { filter });\n  }\n} catch (e) {\n  // Non-fatal: continue import/index even if delete fails\n  this.logger?.warn?.(`Qdrant delete skipped/failed: ${e?.message || e}`);\n}\n\nreturn items.map(item => ({ json: { ...item.json, file_id: fileIdToDelete }, binary: item.binary }));"
          }
        },
        "inputs": {
          "input": [
            {
              "type": "main",
              "required": true
            }
          ]
        },
        "outputs": {
          "output": [
            {
              "type": "main"
            }
          ]
        }
      },
      "typeVersion": 1,
      "alwaysOutputData": false
    },
    {
      "id": "a0be08c7-54b0-41ad-9b8a-326601c0e6b8",
      "name": "Extraer Texto de PDF",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        416,
        -272
      ],
      "parameters": {
        "options": {},
        "operation": "pdf",
        "binaryPropertyName": "=data"
      },
      "executeOnce": true,
      "typeVersion": 1,
      "alwaysOutputData": true
    },
    {
      "id": "c8a629c8-80d6-484f-ade6-e3a969c1a353",
      "name": "Generar Incrustaciones de Documentos",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOllama",
      "position": [
        560,
        -80
      ],
      "parameters": {
        "model": "={{ $env.OLLAMA_EMBED_MODEL || \"nomic-embed-text:latest\" }}"
      },
      "credentials": {
        "ollamaApi": {
          "id": "FLDXCk6C8NH00TJu",
          "name": "Ollama account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "0e2b9829-03bf-4dfb-b557-94d79f13c5d7",
      "name": "Insertar Vectores en Qdrant",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        656,
        -272
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "list",
          "value": "={{ $env.QDRANT_COLLECTION || \"audit-docs\" }}",
          "cachedResultName": "audit-docs"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "efX2OG1ibQmRYvUA",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1.3
    },
    {
      "id": "250e006a-d815-475e-a0f6-daa88c0b2a71",
      "name": "Cargar Metadatos del Documento",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        768,
        -96
      ],
      "parameters": {
        "options": {
          "metadata": {
            "metadataValues": [
              {
                "name": "documentId",
                "value": "={{ $('Delete Old Document Vectors').item.json.body.spDocumentId }}"
              },
              {
                "name": "documentName",
                "value": "={{ $('Delete Old Document Vectors').item.json.body.fileName }}"
              }
            ]
          }
        },
        "textSplittingMode": "custom"
      },
      "typeVersion": 1.1
    },
    {
      "id": "53151c0a-7fbe-4a35-a9a9-9d082842f05f",
      "name": "Dividir Texto en Fragmentos",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        880,
        48
      ],
      "parameters": {
        "options": {},
        "chunkOverlap": 10
      },
      "typeVersion": 1
    },
    {
      "id": "1970eb10-01aa-4108-b686-47e6fa955cf8",
      "name": "Formatear Carga Útil del Procedimiento",
      "type": "n8n-nodes-base.code",
      "position": [
        -224,
        288
      ],
      "parameters": {
        "jsCode": "const {procedures, spDocumentId, description} = $input.first().json.body;\nconst result = procedures.map(procedure => ({ json: { spDocumentId, procedure, description } }));\nreturn result;"
      },
      "typeVersion": 2
    },
    {
      "id": "a9d11ff6-6cf0-4efa-a120-b7d86ecb48fa",
      "name": "Validador de Cumplimiento con IA",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        112,
        288
      ],
      "parameters": {
        "text": "=# Role\nYou are an expert internal auditor with extensive experience in compliance analysis, document review, and gap identification. Your analytical skills, attention to detail, and ability to extract relevant information from complex documents are unmatched in the industry.\n\n# Inputs\n\n**Procedure**\n{{ $json.procedure }}\n \n**spDocumentId**\n{{ $json.spDocumentId }}\n \n**description**\n{{ $json.description }}\n\n# Task\nAnalyze the provided procedure and related documents by following these steps:\n\n1. Carefully review the procedure and description text to understand all requirements and compliance standards.\n2. With the spDocumentId passed in, generate effective search queries based on key requirements in the procedure.\n3. Use these queries to retrieve relevant text from the Qdrant datastore that relates to compliance requirements.\n4. Systematically analyze the retrieved documents to:\n   - Identify sections that meet the procedure's requirements\n   - Identify gaps where requirements are not met\n   - Document specific citations for both compliant and non-compliant findings\n5. Organize your findings into a structured JSON response with clear summaries and supporting evidence.\n6. Assign an appropriate confidence level to your analysis based on the quality and relevance of the evidence found.\n\n# Specifics\n- This compliance analysis is critically important to our organization's regulatory standing, and your thorough evaluation will directly impact our business operations.\n- When generating search queries, focus on specific requirements, standards, and action items mentioned in the procedure.\n- For each compliance or non-compliance finding, provide specific text citations including page numbers or section references.\n- Your expertise in identifying subtle compliance gaps is greatly valued and will help protect our organization from potential regulatory issues.\n- If certain requirements have no corresponding evidence in the documents, clearly indicate this as a gap in the non-compliance summary.\n- Ensure your confidence level accurately reflects the strength of evidence found in the documents.\n\n# Context\nYou are conducting an internal audit for a regulated organization that must demonstrate compliance with specific procedures. The Qdrant vector datastore contains the full text of all relevant documents that need to be evaluated against the procedure requirements. Your analysis will be used by compliance officers and management to address any gaps and prepare for potential external audits. The procedure document contains the standards against which all other documents must be measured, and your task is to determine whether these standards are being met based on the evidence in the documents.\n\n# Examples\n## Example 1\nQ:\n{\n  \"output\": {\n    \"procedure\": \"Analyze financial and operational highlights, identify key issues, and develop strategic recommendations.\",\n    \"spDocumentId\": \"SP123456\",\n    \"confidenceLevel\": 40,\n    \"summaryOfCompliance\": \"The meeting transcript provided detailed insights into Apollo's financial performance and operational strategies. The summary of compliance includes a thorough analysis of sales trends, pricing adjustments, R&D projects, cost-saving measures, marketing efforts, and legal considerations.\",\n    \"summaryOfNonCompliance\": \"There are no specific non-compliances noted in the provided transcript; however, potential risks such as market research gaps, cost-cutting strategies impacting innovation, and pending litigation pose challenges that need to be addressed.\",\n    \"supportingTextCitations\": \"Based on the meeting transcript, key financial highlights include decreased sales of premium shoes, increased product prices by approximately 10%, cessation of the Phoneshoe project, labor reallocation, reduced postage and phone expenses, Superbowl commercial costs increase, and pending litigation.\"\n  }\n}\n\n## Example 2\nQ:\n[\n  {\n    \"output\": {\n      \"procedure\": \"Implement all recommendations from Charter for Corporate Responsibility in Environmental Protection (CREP) related to cement plants.\",\n      \"spDocumentId\": \"SP-DOC-00123\",\n      \"confidenceLevel\": 40,\n      \"summaryOfCompliance\": \"All commitments made during the Public Hearing on July 18, 2012, will be satisfactorily implemented. A separate budget has been allocated for this purpose and progress reports will be submitted to the Ministry's Regional Office in Bangalore.\",\n      \"summaryOfNonCompliance\": \"None were found.\",\n      \"supportingTextCitations\": \"citation on page 3\"\n    }\n  }\n]\n\n# Notes\n- Return only a structured JSON response matching the required schema.\n- If any fields would be empty, provide \"No Additional Feedback\" as the value.\n- Place special emphasis on the accuracy of citations to ensure traceability of your findings.\n- Ensure your confidence level (0-100) accurately reflects the quality and completeness of evidence found.\n- Remember that both compliance and non-compliance findings are equally important for a comprehensive audit.",
        "options": {},
        "promptType": "define",
        "hasOutputParser": true
      },
      "executeOnce": false,
      "typeVersion": 2.1
    },
    {
      "id": "d2cef8a0-0e15-4e06-9c5c-3eae0aa2fc93",
      "name": "Modelo de Lenguaje (Agente de IA)",
      "type": "@n8n/n8n-nodes-langchain.lmChatOllama",
      "position": [
        16,
        496
      ],
      "parameters": {
        "model": "={{ $env.OLLAMA_CHAT_MODEL || \"qwen2.5:7b\" }}",
        "options": {
          "numCtx": 2048
        }
      },
      "credentials": {
        "ollamaApi": {
          "id": "FLDXCk6C8NH00TJu",
          "name": "Ollama account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "26ff7b08-8fd3-4ea6-baee-ca215382cffb",
      "name": "Recuperar Fragmentos Relevantes del Documento",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        192,
        496
      ],
      "parameters": {
        "mode": "retrieve-as-tool",
        "topK": 8,
        "options": {
          "searchFilterJson": "={\n  \"should\": [\n    {\n      \"key\": \"metadata.documentId\",\n      \"match\": { \"value\": \"{{ $('Format Procedure Payload').first().json.spDocumentId }}\" }\n    }\n  ]\n}"
        },
        "toolDescription": "Query document text from uploaded documents.",
        "qdrantCollection": {
          "__rl": true,
          "mode": "list",
          "value": "={{ $env.QDRANT_COLLECTION || \"audit-docs\" }}",
          "cachedResultName": "audit-docs"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "efX2OG1ibQmRYvUA",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1.3
    },
    {
      "id": "b5f941e6-699f-4146-9ac5-98881a6e350c",
      "name": "Generar Incrustaciones de Consulta",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOllama",
      "position": [
        256,
        640
      ],
      "parameters": {
        "model": "={{ $env.OLLAMA_EMBED_MODEL || \"nomic-embed-text:latest\" }}"
      },
      "credentials": {
        "ollamaApi": {
          "id": "FLDXCk6C8NH00TJu",
          "name": "Ollama account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "0f05420f-46ff-4388-9ac4-1873769b27fa",
      "name": "Modelo de Lenguaje (Salida Estructurada)",
      "type": "@n8n/n8n-nodes-langchain.lmChatOllama",
      "position": [
        560,
        640
      ],
      "parameters": {
        "model": "={{ $env.OLLAMA_CHAT_MODEL || \"qwen2.5:7b\" }}",
        "options": {}
      },
      "credentials": {
        "ollamaApi": {
          "id": "FLDXCk6C8NH00TJu",
          "name": "Ollama account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "cc4d8ab4-4fb6-43e1-bac2-608d7cde44b9",
      "name": "Analizar Respuesta de la IA",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        496,
        496
      ],
      "parameters": {
        "autoFix": true,
        "schemaType": "manual",
        "inputSchema": "{\n  \"type\": \"object\",\n  \"required\": [\"confidenceLevel\",\"summaryOfCompliance\",\"summaryOfNonCompliance\",\"supportingTextCitations\"],\n  \"properties\": {\n    \"procedure\": {\"type\": \"string\"},\n    \"spDocumentId\": {\"type\": \"string\"},\n    \"confidenceLevel\": {\"type\": \"integer\"},\n    \"summaryOfCompliance\": {\"type\": \"string\"},\n    \"summaryOfNonCompliance\": {\"type\": \"string\"},\n    \"supportingTextCitations\": {\"type\": \"string\"}\n  }\n}"
      },
      "typeVersion": 1.3
    },
    {
      "id": "d67b5769-ef38-4e94-b0eb-9052c43dd113",
      "name": "Devolver Informe de Cumplimiento",
      "type": "n8n-nodes-base.respondToWebhook",
      "position": [
        608,
        288
      ],
      "parameters": {
        "options": {},
        "respondWith": "allIncomingItems"
      },
      "typeVersion": 1.4
    },
    {
      "id": "a07e2a08-6304-4abf-81b0-d2ab0ae90c5d",
      "name": "Nota Adhesiva",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -464,
        -480
      ],
      "parameters": {
        "content": "### 1. Start: Upload Document\n* Via Webhook: Audit Document Upload\n* Accepts PDF/DOCX file\n* Optionally fetches from Microsoft Graph"
      },
      "typeVersion": 1
    },
    {
      "id": "5bfb1299-0b6b-4c45-abce-f2c725c22581",
      "name": "Nota Adhesiva1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -16,
        -480
      ],
      "parameters": {
        "content": "### 2. Document Preprocessing\n* Clear Old Vectors (remove previous embeddings for same file)\n* Extract PDF Text\n* Split into chunks for embedding\n* Generate embeddings → Insert into Qdrant"
      },
      "typeVersion": 1
    },
    {
      "id": "3b49fd17-f85d-4ad4-9ad3-e8274faf9fef",
      "name": "Nota Adhesiva2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -464,
        80
      ],
      "parameters": {
        "content": "### 3. Procedure Submission\n* Webhook: Procedure Submission\n* Accepts JSON payload (procedure, description, spDocumentId)\n* Payload formatted → passed to AI"
      },
      "typeVersion": 1
    },
    {
      "id": "cb5b5349-47d3-4c01-ac2a-ea7a9b596503",
      "name": "Nota Adhesiva3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        96,
        80
      ],
      "parameters": {
        "content": "### 4. AI Compliance Validation\n* Retrieve Relevant Document Chunks from Qdrant\n* AI Compliance Validator uses LLM + embeddings\n* Output parsed & structured into JSON"
      },
      "typeVersion": 1
    },
    {
      "id": "d6b8d7c6-d14d-4625-97de-ac6fdd792156",
      "name": "Nota Adhesiva4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        576,
        80
      ],
      "parameters": {
        "content": "### 5. Return Results\n* Structured compliance report returned to webhook caller"
      },
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "a0be08c7-54b0-41ad-9b8a-326601c0e6b8": {
      "main": [
        [
          {
            "node": "0e2b9829-03bf-4dfb-b557-94d79f13c5d7",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "cc4d8ab4-4fb6-43e1-bac2-608d7cde44b9": {
      "ai_outputParser": [
        [
          {
            "node": "a9d11ff6-6cf0-4efa-a120-b7d86ecb48fa",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "bf8f5941-db69-4db3-b344-183e23b010ca": {
      "main": [
        [
          {
            "node": "1970eb10-01aa-4108-b686-47e6fa955cf8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "22c5f212-aeca-46d1-a684-41147efc6547": {
      "main": [
        [
          {
            "node": "35b34dc7-27f0-446d-b052-1bf7eb990ce2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "250e006a-d815-475e-a0f6-daa88c0b2a71": {
      "ai_document": [
        [
          {
            "node": "0e2b9829-03bf-4dfb-b557-94d79f13c5d7",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "53151c0a-7fbe-4a35-a9a9-9d082842f05f": {
      "ai_textSplitter": [
        [
          {
            "node": "250e006a-d815-475e-a0f6-daa88c0b2a71",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "a9d11ff6-6cf0-4efa-a120-b7d86ecb48fa": {
      "main": [
        [
          {
            "node": "d67b5769-ef38-4e94-b0eb-9052c43dd113",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1970eb10-01aa-4108-b686-47e6fa955cf8": {
      "main": [
        [
          {
            "node": "a9d11ff6-6cf0-4efa-a120-b7d86ecb48fa",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b5f941e6-699f-4146-9ac5-98881a6e350c": {
      "ai_embedding": [
        [
          {
            "node": "26ff7b08-8fd3-4ea6-baee-ca215382cffb",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "d2cef8a0-0e15-4e06-9c5c-3eae0aa2fc93": {
      "ai_languageModel": [
        [
          {
            "node": "a9d11ff6-6cf0-4efa-a120-b7d86ecb48fa",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "a9520145-7f98-4f22-a477-cb24caa599b2": {
      "main": [
        [
          {
            "node": "a0be08c7-54b0-41ad-9b8a-326601c0e6b8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c8a629c8-80d6-484f-ade6-e3a969c1a353": {
      "ai_embedding": [
        [
          {
            "node": "0e2b9829-03bf-4dfb-b557-94d79f13c5d7",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "35b34dc7-27f0-446d-b052-1bf7eb990ce2": {
      "main": [
        [
          {
            "node": "a9520145-7f98-4f22-a477-cb24caa599b2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "26ff7b08-8fd3-4ea6-baee-ca215382cffb": {
      "ai_tool": [
        [
          {
            "node": "a9d11ff6-6cf0-4efa-a120-b7d86ecb48fa",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "0f05420f-46ff-4388-9ac4-1873769b27fa": {
      "ai_languageModel": [
        [
          {
            "node": "cc4d8ab4-4fb6-43e1-bac2-608d7cde44b9",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    }
  }
}
Preguntas frecuentes

¿Cómo usar este flujo de trabajo?

Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.

¿En qué escenarios es adecuado este flujo de trabajo?

Avanzado - RAG de IA, IA Multimodal

¿Es de pago?

Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.

Información del flujo de trabajo
Nivel de dificultad
Avanzado
Número de nodos22
Categoría2
Tipos de nodos14
Descripción de la dificultad

Adecuado para usuarios avanzados, flujos de trabajo complejos con 16+ nodos

Enlaces externos
Ver en n8n.io

Compartir este flujo de trabajo

Categorías

Categorías: 34