Copywriting de IA RAG con mezcla de contexto
Este es unAI RAG, Multimodal AIflujo de automatización del dominio deautomatización que contiene 76 nodos.Utiliza principalmente nodos como If, Set, Code, Wait, Crypto. Sincronización de Google Drive a Supabase para base de datos vectorial de contexto para aplicaciones RAG
- •URL y Clave de API de Supabase
- •Credenciales de API de Google Drive
- •Pueden requerirse credenciales de autenticación para la API de destino
- •Clave de API de OpenAI
Nodos utilizados (76)
Categoría
{
"id": "XwFvFryyo4goPzpd",
"meta": {
"instanceId": "00761fd5aea81495387b0889e15912dcc912b73b7bf62f5ca3898afbd7a79723",
"templateCredsSetupCompleted": true
},
"name": "Contextual Hybrid RAG AI copy",
"tags": [
{
"id": "YINdrIOThMQjiVkB",
"name": "RAG",
"createdAt": "2025-06-18T21:07:48.174Z",
"updatedAt": "2025-06-18T21:07:48.174Z"
},
{
"id": "j0SNhalFSbPAhdWo",
"name": "n8n creator",
"createdAt": "2025-09-02T01:40:23.866Z",
"updatedAt": "2025-09-02T01:40:23.866Z"
}
],
"nodes": [
{
"id": "c1422e6a-289f-4499-b19b-62df452010b2",
"name": "Agente IA",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
-2544,
-736
],
"parameters": {
"options": {
"systemMessage": "Only generate answers based on the results from the connected database. Do no under any circumstance, get answers from anywhere else.\nfor every query check the database to see if you can find an answer. If you can not or are not sure, then say 'Sorry, I don’t know'. Never come up with answers. Only get answers from the database"
}
},
"typeVersion": 2
},
{
"id": "efb0bd4c-0b6d-4b96-8e8d-d1b511174151",
"name": "Al recibir mensaje de chat",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-2784,
-736
],
"webhookId": "f4516070-1da1-41ad-8320-bd3a31cddf12",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "3c285b17-d4f0-4e8e-809b-38be2a5ede94",
"name": "Simple Memoria",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
-2544,
-528
],
"parameters": {
"contextWindowLength": 10
},
"typeVersion": 1.3
},
{
"id": "8a624394-5019-4a67-a31c-c56fad7b1406",
"name": "Modelo de chat OpenAI",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
-2704,
-528
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1",
"cachedResultName": "gpt-4.1"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "QsPyEUltWeliSiFb",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "317048f7-1423-4922-ac19-ad1b79152359",
"name": "Google Drive",
"type": "n8n-nodes-base.googleDrive",
"position": [
-3536,
304
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "id",
"value": "={{ $json.id }}"
},
"options": {},
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "KZY6CHPvoIbIxMKd",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "27074acb-2256-4b79-a093-df35755ca0e8",
"name": "Search Record Manager",
"type": "n8n-nodes-base.supabase",
"position": [
-2608,
304
],
"parameters": {
"limit": 1,
"filters": {
"conditions": [
{
"keyName": "gd_file_id",
"keyValue": "={{ $('Loop Over Items').item.json.id }}",
"condition": "eq"
}
]
},
"tableId": "record_managerhs",
"operation": "getAll"
},
"credentials": {
"supabaseApi": {
"id": "bi5dJhIwrvuB6YQA",
"name": "CHRAG"
}
},
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "cc825e4c-1f68-4688-8e32-5d08b3aab1ac",
"name": "Create Row in Record Manager",
"type": "n8n-nodes-base.supabase",
"position": [
-1808,
48
],
"parameters": {
"tableId": "record_managerhs",
"fieldsUi": {
"fieldValues": [
{
"fieldId": "gd_file_id",
"fieldValue": "={{ $('Loop Over Items').item.json.id }}"
},
{
"fieldId": "hash",
"fieldValue": "={{ $('Generate Hash').item.json.hash }}"
}
]
}
},
"credentials": {
"supabaseApi": {
"id": "bi5dJhIwrvuB6YQA",
"name": "CHRAG"
}
},
"typeVersion": 1
},
{
"id": "39445058-69b3-4bf1-8236-99a4a55e7d86",
"name": "Interruptor",
"type": "n8n-nodes-base.switch",
"position": [
-2416,
288
],
"parameters": {
"rules": {
"values": [
{
"outputKey": "does not exist",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "loose"
},
"combinator": "and",
"conditions": [
{
"id": "231bfd13-5f93-4801-b0f5-9ff2d949c165",
"operator": {
"type": "object",
"operation": "empty",
"singleValue": true
},
"leftValue": "={{ $json }}",
"rightValue": ""
}
]
},
"renameOutput": true
},
{
"outputKey": "modified",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "loose"
},
"combinator": "and",
"conditions": [
{
"id": "b311878c-297f-4d5b-ba2f-f1babb9c9f7b",
"operator": {
"type": "string",
"operation": "notEquals"
},
"leftValue": "={{ $json.hash }}",
"rightValue": "={{ $('Generate Hash').item.json.hash }}"
}
]
},
"renameOutput": true
},
{
"outputKey": "exist",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "loose"
},
"combinator": "and",
"conditions": [
{
"id": "dc26f05e-859a-40a4-b0e3-49abc55397a5",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $('Generate Hash').item.json.hash }}",
"rightValue": "={{ $json.hash }}"
}
]
},
"renameOutput": true
}
]
},
"options": {},
"looseTypeValidation": true
},
"typeVersion": 3.2
},
{
"id": "10062467-974d-4103-aeb3-bff32d0c6e3f",
"name": "Delete Previous Vectors",
"type": "n8n-nodes-base.supabase",
"position": [
-2016,
368
],
"parameters": {
"tableId": "documentshs",
"operation": "delete",
"filterType": "string",
"filterString": "=metadata->>file_id=eq.{{ $('Loop Over Items').item.json.id }}"
},
"credentials": {
"supabaseApi": {
"id": "GZCrvWKfz1aQNVve",
"name": "Supabase - RAG"
}
},
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "e145b247-04d6-40f9-b3ab-7ad034aa0a31",
"name": "Generate Hash",
"type": "n8n-nodes-base.crypto",
"position": [
-2848,
304
],
"parameters": {
"type": "SHA256",
"value": "={{ $json.text }}",
"dataPropertyName": "hash"
},
"typeVersion": 1
},
{
"id": "40aa27bb-4577-4d2d-abc4-0ed103fc0cbd",
"name": "Update Record Manager",
"type": "n8n-nodes-base.supabase",
"position": [
-1600,
368
],
"parameters": {
"filters": {
"conditions": [
{
"keyName": "id",
"keyValue": "={{ $('Search Record Manager').item.json.id }}",
"condition": "eq"
}
]
},
"tableId": "record_managerhs",
"fieldsUi": {
"fieldValues": [
{
"fieldId": "hash",
"fieldValue": "={{ $('Generate Hash').item.json.hash }}"
}
]
},
"operation": "update"
},
"credentials": {
"supabaseApi": {
"id": "GZCrvWKfz1aQNVve",
"name": "Supabase - RAG"
}
},
"typeVersion": 1
},
{
"id": "f0c2dcd5-5fe8-4968-a510-0f7d997d3b2f",
"name": "Agregar",
"type": "n8n-nodes-base.aggregate",
"position": [
-1824,
368
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData"
},
"typeVersion": 1
},
{
"id": "56bc70d8-aba3-4534-be6b-05cce089505a",
"name": "Basic LLM Cadena",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
-1248,
272
],
"parameters": {
"text": "=# File Name\n{{ $('Loop Over Items').item.json.name}}\n\n# File Content\n{{ $('Set Text').item.json.text.split(/\\s+/).length > 500\n? $('Set Text').item.json.text.split(/\\s+/).slice(0, 500).join(' ') + '...'\n: $('Set Text').item.json.text}}",
"batching": {},
"messages": {
"messageValues": [
{
"message": "=Based on the provided file name and file contents, extract out a 1 sentence description of what the document is about and classify the document based on motorsport category. \n\n Only output JSON in the following format \n\n{ \n\"document_summary\": \"document summary\"\n}\n\nIf you are unsure, just output N/A in the field. \n\n"
}
]
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.7
},
{
"id": "c99060a8-fe04-44c8-86ad-76ad9c0f2f6c",
"name": "Structured Output Parser",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
-1072,
432
],
"parameters": {
"jsonSchemaExample": "{ \n\"documentSummary\": \"document summary\"\n} "
},
"typeVersion": 1.3
},
{
"id": "478f6320-0c37-478c-8321-8083e5d903fe",
"name": "Modelo de chat OpenAI1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
-1264,
432
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1",
"cachedResultName": "gpt-4.1"
},
"options": {
"responseFormat": "json_object"
}
},
"credentials": {
"openAiApi": {
"id": "QsPyEUltWeliSiFb",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "3e9028df-ff29-4599-9ae9-c08a3811f047",
"name": "Extract from File",
"type": "n8n-nodes-base.extractFromFile",
"position": [
-3344,
304
],
"parameters": {
"options": {},
"operation": "pdf"
},
"typeVersion": 1
},
{
"id": "df98c1e9-b29c-4558-bbe4-a8925fd5a2f1",
"name": "Establecer Text",
"type": "n8n-nodes-base.set",
"position": [
-3104,
304
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "766bf659-155f-4d60-a033-085b3a752933",
"name": "text",
"type": "string",
"value": "={{ $json.text }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "258005cc-104e-4e31-96f0-a3fae138da93",
"name": "Recorrer elementos1",
"type": "n8n-nodes-base.splitInBatches",
"position": [
-2224,
976
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "84ac45bc-27c8-4fce-8e03-be8c9cf18fe8",
"name": "Search Record Manager1",
"type": "n8n-nodes-base.supabase",
"position": [
-1936,
976
],
"parameters": {
"limit": 1,
"filters": {
"conditions": [
{
"keyName": "gd_file_id",
"keyValue": "={{ $('Loop Over Items1').item.json.id }}",
"condition": "eq"
}
]
},
"tableId": "record_managerhs",
"operation": "getAll"
},
"credentials": {
"supabaseApi": {
"id": "bi5dJhIwrvuB6YQA",
"name": "CHRAG"
}
},
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "81fc8e77-f1fb-4914-87b7-489bdcdf3f9d",
"name": "If1",
"type": "n8n-nodes-base.if",
"position": [
-1728,
976
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "21ca0db4-5ca4-49e8-86c1-9e09c469122d",
"operator": {
"type": "object",
"operation": "exists",
"singleValue": true
},
"leftValue": "={{$json}}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "9561c9dd-0b82-4cdb-bed0-a3307d206394",
"name": "Delete Previous Vectors1",
"type": "n8n-nodes-base.supabase",
"position": [
-1472,
976
],
"parameters": {
"tableId": "documentshs",
"operation": "delete",
"filterType": "string",
"filterString": "=metadata->>file_id=eq.{{ $('Loop Over Items1').item.json.id }}"
},
"credentials": {
"supabaseApi": {
"id": "bi5dJhIwrvuB6YQA",
"name": "CHRAG"
}
},
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "31cc03e7-50db-4c6d-b266-136225457218",
"name": "Agregar1",
"type": "n8n-nodes-base.aggregate",
"position": [
-1280,
976
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData"
},
"typeVersion": 1
},
{
"id": "0c76dd9b-be10-4fdd-8536-ea3eb75a6cba",
"name": "Delete Record from Record Manager1",
"type": "n8n-nodes-base.supabase",
"position": [
-1072,
976
],
"parameters": {
"filters": {
"conditions": [
{
"keyName": "id",
"keyValue": "={{ $('Search Record Manager1').item.json.id }}",
"condition": "eq"
}
]
},
"tableId": "record_managerhs",
"operation": "delete"
},
"credentials": {
"supabaseApi": {
"id": "bi5dJhIwrvuB6YQA",
"name": "CHRAG"
}
},
"typeVersion": 1
},
{
"id": "c41851a0-ba52-432d-ae00-752bb630cead",
"name": "Google Drive2",
"type": "n8n-nodes-base.googleDrive",
"position": [
-848,
976
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "id",
"value": "={{ $('Loop Over Items1').item.json.id }}"
},
"options": {},
"operation": "deleteFile"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "KZY6CHPvoIbIxMKd",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "03516980-317e-483d-9471-6cf9e3148415",
"name": "Watch GD Trash",
"type": "n8n-nodes-base.googleDriveTrigger",
"position": [
-2432,
976
],
"parameters": {
"event": "fileCreated",
"options": {},
"pollTimes": {
"item": [
{
"mode": "everyMinute"
}
]
},
"triggerOn": "specificFolder",
"folderToWatch": {
"__rl": true,
"mode": "list",
"value": "1gwf7pIH8X5wU-i0YMw-j7qPSA4MnA40L",
"cachedResultUrl": "https://drive.google.com/drive/folders/1gwf7pIH8X5wU-i0YMw-j7qPSA4MnA40L",
"cachedResultName": "Trash"
}
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "KZY6CHPvoIbIxMKd",
"name": "Google Drive account"
}
},
"typeVersion": 1
},
{
"id": "a791c6a2-1311-40cc-837e-c875425774cc",
"name": "Watch GD RAG Files",
"type": "n8n-nodes-base.googleDriveTrigger",
"position": [
-3984,
304
],
"parameters": {
"event": "fileCreated",
"options": {},
"pollTimes": {
"item": [
{
"mode": "everyMinute"
}
]
},
"triggerOn": "specificFolder",
"folderToWatch": {
"__rl": true,
"mode": "list",
"value": "1e1Af14X5nlPq6oVEqbHs4h7pQtYktzAM",
"cachedResultUrl": "https://drive.google.com/drive/folders/1e1Af14X5nlPq6oVEqbHs4h7pQtYktzAM",
"cachedResultName": "RAG Files"
}
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "KZY6CHPvoIbIxMKd",
"name": "Google Drive account"
}
},
"typeVersion": 1
},
{
"id": "3024e04e-86c4-43d6-819d-22f45ef40750",
"name": "When Executed by Another Workflow",
"type": "n8n-nodes-base.executeWorkflowTrigger",
"position": [
-2016,
-544
],
"parameters": {
"workflowInputs": {
"values": [
{
"name": "query"
}
]
}
},
"typeVersion": 1.1
},
{
"id": "5da16ea7-5c2c-4326-8069-7228ea20041f",
"name": "Query Almacén de vectores",
"type": "@n8n/n8n-nodes-langchain.toolWorkflow",
"position": [
-2272,
-512
],
"parameters": {
"workflowId": {
"__rl": true,
"mode": "list",
"value": "XwFvFryyo4goPzpd",
"cachedResultName": "Contextual Hybrid RAG AI copy"
},
"description": "Call this tool to get knowledge from our vector database",
"workflowInputs": {
"value": {
"query": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('query', ``, 'string') }}"
},
"schema": [
{
"id": "query",
"type": "string",
"display": true,
"required": false,
"displayName": "query",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"query"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
}
},
"typeVersion": 2.2
},
{
"id": "467f3d3b-8727-413b-aa8d-7547ac7d8a68",
"name": "Recorrer elementos",
"type": "n8n-nodes-base.splitInBatches",
"position": [
-3776,
304
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "7d2d4e71-ce5f-4e08-a5fb-2ca01d17e6a6",
"name": "Establecer Text for Chunking",
"type": "n8n-nodes-base.set",
"position": [
-864,
272
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "5fb33f33-8d7f-467e-ab8b-784c411b63b2",
"name": "content",
"type": "string",
"value": "={{ $('Set Text').item.json.text }}"
},
{
"id": "d0fdcb3c-915f-4e39-93de-ac8244415be5",
"name": "documentSummary",
"type": "string",
"value": "={{ $json.output.document_summary }}"
},
{
"id": "5ffe4726-56f1-4478-9f89-ba862efce940",
"name": "file_id",
"type": "string",
"value": "={{ $('Loop Over Items').item.json.id }}"
},
{
"id": "df951786-5196-4590-9e32-fed42ef35200",
"name": "fileName",
"type": "string",
"value": "={{ $('Loop Over Items').item.json.name }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "9a68682b-7a2f-40ca-91a9-e0d935ec7ed3",
"name": "Nota adhesiva1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-4016,
144
],
"parameters": {
"width": 160,
"height": 304,
"content": "### Watch GD folder\n"
},
"typeVersion": 1
},
{
"id": "22acc35b-1370-450f-90f2-ff4a2c9f61e4",
"name": "Nota adhesiva6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-3136,
144
],
"parameters": {
"width": 160,
"height": 300,
"content": "### Set Text"
},
"typeVersion": 1
},
{
"id": "cb0d4e98-3716-4bba-8f33-a1c0ee5224a7",
"name": "Nota adhesiva7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2896,
144
],
"parameters": {
"width": 172,
"height": 308,
"content": " ### Generate Hash based on the text. If text changes we have a different hash"
},
"typeVersion": 1
},
{
"id": "6f0493ae-8973-48c8-9338-f62d1b826445",
"name": "Nota adhesiva8",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2656,
144
],
"parameters": {
"width": 188,
"height": 308,
"content": "### Search the record manager to see if we have any files in the database, that have the same file id. If it does, it will return the hash"
},
"typeVersion": 1
},
{
"id": "6336a34a-fade-435c-b0a7-5257b48c5579",
"name": "Nota adhesiva9",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2432,
112
],
"parameters": {
"width": 180,
"height": 340,
"content": "### Compare the Hash from generated hash and (if it exists) hash from record manager search to determine if file exists or not and if modified"
},
"typeVersion": 1
},
{
"id": "be85f58e-3cff-42f7-b1ff-d1f22c781961",
"name": "Nota adhesiva10",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2080,
256
],
"parameters": {
"width": 640,
"height": 280,
"content": "### If the doc is modified, we delete all the vectors related to that google id and update record manager id and hash"
},
"typeVersion": 1
},
{
"id": "79ee3377-d001-4bd7-8d25-c48e5676aff7",
"name": "Nota adhesiva11",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1328,
176
],
"parameters": {
"width": 380,
"height": 220,
"content": "### Create summary of document for metadata"
},
"typeVersion": 1
},
{
"id": "2943dad5-ae6b-4fde-a293-eb8e319bc41b",
"name": "Nota adhesiva12",
"type": "n8n-nodes-base.stickyNote",
"position": [
-896,
176
],
"parameters": {
"width": 160,
"height": 224,
"content": "### Set text to send to sub-workflow"
},
"typeVersion": 1
},
{
"id": "6109b822-9860-4a85-860b-15dd4494bac7",
"name": "Nota adhesiva14",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2464,
864
],
"parameters": {
"width": 156,
"height": 280,
"content": "### Watch GD Trash folder"
},
"typeVersion": 1
},
{
"id": "4522d72b-9a92-4614-a2c8-f6a739d2169d",
"name": "Nota adhesiva15",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1984,
864
],
"parameters": {
"width": 192,
"height": 264,
"content": "### Search record manager on corresponding GD file id"
},
"typeVersion": 1
},
{
"id": "c57592c9-e02e-4861-a1e3-189f3b24f7cf",
"name": "Nota adhesiva16",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1760,
864
],
"parameters": {
"width": 160,
"height": 264,
"content": "### if records exist for this id or not\n"
},
"typeVersion": 1
},
{
"id": "9af264c1-de52-4fd7-9366-7d573499b02a",
"name": "Nota adhesiva17",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1520,
864
],
"parameters": {
"width": 580,
"height": 264,
"content": "### Delete records from supabase"
},
"typeVersion": 1
},
{
"id": "0403746d-e354-4d88-93d4-a05f9faa4aea",
"name": "Nota adhesiva18",
"type": "n8n-nodes-base.stickyNote",
"position": [
-880,
864
],
"parameters": {
"width": 150,
"height": 264,
"content": "### Delete file from GD"
},
"typeVersion": 1
},
{
"id": "d48e00db-570d-41b5-a5db-4435059fe3ec",
"name": "Nota adhesiva19",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2304,
-624
],
"parameters": {
"width": 1020,
"height": 240,
"content": "## Query Seach Supabase Database Tool with workflow"
},
"typeVersion": 1
},
{
"id": "1af9acb3-e6a8-435d-9d91-cb84c5fd608b",
"name": "Nota adhesiva20",
"type": "n8n-nodes-base.stickyNote",
"position": [
-688,
192
],
"parameters": {
"width": 150,
"height": 248,
"content": "### Set up data\n"
},
"typeVersion": 1
},
{
"id": "936e7ead-1a8c-4337-b784-5732ef2784ac",
"name": "Nota adhesiva",
"type": "n8n-nodes-base.stickyNote",
"position": [
-6000,
-16
],
"parameters": {
"width": 752,
"height": 800,
"content": "## Setting up Supabase\n\n\n### Create a project, and fill in the details as guided by Supabase. On the left hand side, you will find the Project Overview section. Scroll down to connecting your project section and you will find the url and api key, which you can place in the credentials section or in the create new credentials in a supabase node.\n\n\n\n\n\n## Setting up the Hybrid Search in Supabase\n### You can learn more about hybrid search here: https://supabase.com/docs/guides/ai/hybrid-search\n\n### Go to the SQL Editor tab, and delete the existing code. First we will create the documents for the Hybrid Search called documentsHS. Find the code in a note in this workflow to the left of this sticky note. Copy & paste the code in the SQL Editor and click run. You will get a message saying pg_notify. The documentsHS is complete. Now delete the code and copy paste the code for the record manager called record_managerHS in the sticky note on the left. You will get a message saying Success. No Rows Returned. You have now created the tables for the hybrid search. \n\n## To call the hybrid search, we will use the edge function.\n### To create the edge function, go to the edge function (left hand side bar), click deploy a new function, and select Via AI Assistant. Paste \"Create a new edge function that calls on the match_documentshs_hybrid so it can be called through API\". This will create your edge function and you can click on deploy to deploy it. In the details section, you will find the endpoint URL that you can paste into the URL in the HTTP Request (called Edge Function). Make sure to copy the Bearer YOUR_API_KEY as well and create a Header Auth to store it. You will find that in the Generic Auth Type under Header Auth. That will go in the Value section and the word 'Authorization' in the Name. You have now successfully completed the setup for the hybrid search."
},
"typeVersion": 1
},
{
"id": "76cf1951-f712-4d05-ab00-c5201a4bdf15",
"name": "Nota adhesiva2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-7456,
-784
],
"parameters": {
"width": 656,
"height": 2416,
"content": "# documentHS\n\n\n-- Extensions\ncreate extension if not exists vector;\ncreate extension if not exists pg_trgm;\n\n-- Table\ncreate table if not exists documentsHS (\n id bigserial primary key,\n content text,\n metadata jsonb,\n embedding vector(1536),\n tokens tsvector generated always as (\n to_tsvector('english', coalesce(content, ''))\n ) stored\n);\n\n-- Indexes\ncreate index if not exists documentsHS_tokens_gin\n on documentsHS using gin (tokens);\n\ncreate index if not exists documentsHS_embedding_ivfflat\n on documentsHS using ivfflat (embedding vector_cosine_ops) with (lists = 100);\n\ncreate index if not exists documentsHS_metadata_gin\n on documentsHS using gin (metadata);\n\n-- ==========================================\n-- Single HYBRID function exposed via RPC\n-- ==========================================\ncreate or replace function public.match_documentshs_hybrid(\n query_embedding float4[], -- required; send as JSON array\n query_text text, -- required\n match_count int default 10,\n semantic_weight float default 0.5, -- 0..1 (higher = more semantic)\n filter jsonb default '{}' -- optional structured filter\n)\nreturns table (\n id bigint,\n content text,\n metadata jsonb,\n similarity double precision,\n keyword_rank double precision,\n hybrid_score double precision\n)\nlanguage sql\nstable\nas $$\n with base as (\n select\n d.id,\n d.content,\n d.metadata,\n (1 - (d.embedding <=> (query_embedding::vector(1536)))) as sim,\n ts_rank(d.tokens, plainto_tsquery('english', query_text)) as kw_rank\n from documentsHS d\n where d.metadata @> filter\n ),\n stats as (\n select max(sim) as max_sim, max(kw_rank) as max_kw from base\n )\n select\n b.id,\n b.content,\n b.metadata,\n b.sim as similarity,\n b.kw_rank as keyword_rank,\n (\n coalesce(case when s.max_sim > 0 then b.sim / s.max_sim else 0 end, 0) * semantic_weight\n +\n coalesce(case when s.max_kw > 0 then b.kw_rank / s.max_kw else 0 end, 0) * (1 - semantic_weight)\n ) as hybrid_score\n from base b cross join stats s\n where (b.sim > 0) or (b.kw_rank > 0)\n order by hybrid_score desc\n limit match_count;\n$$;\n\n-- Optional helpers\ncreate or replace function public.match_documentshs_vector_only(\n query_embedding float4[],\n match_count int default 10,\n filter jsonb default '{}'\n)\nreturns table (\n id bigint,\n content text,\n metadata jsonb,\n similarity double precision\n)\nlanguage sql\nstable\nas $$\n select\n d.id, d.content, d.metadata,\n (1 - (d.embedding <=> (query_embedding::vector(1536)))) as similarity\n from documentsHS d\n where d.metadata @> filter\n order by d.embedding <=> (query_embedding::vector(1536))\n limit match_count;\n$$;\n\ncreate or replace function public.match_documentshs_keyword_only(\n query_text text,\n match_count int default 10,\n filter jsonb default '{}'\n)\nreturns table (\n id bigint,\n content text,\n metadata jsonb,\n keyword_rank double precision\n)\nlanguage sql\nstable\nas $$\n select\n d.id, d.content, d.metadata,\n ts_rank(d.tokens, plainto_tsquery('english', query_text)) as keyword_rank\n from documentsHS d\n where d.metadata @> filter\n and plainto_tsquery('english', query_text) @@ d.tokens\n order by keyword_rank desc\n limit match_count;\n$$;\n\n-- Reload API schema\nselect pg_notify('pgrst', 'reload schema');"
},
"typeVersion": 1
},
{
"id": "ae127c8a-15e8-485a-913b-932e7a3f0f15",
"name": "Nota adhesiva3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-6784,
-784
],
"parameters": {
"width": 592,
"height": 224,
"content": "# record_managerHS code\n\ncreate table public.record_managerHS (\n id bigint generated by default as identity not null,\n created_at timestamp with time zone not null default now(),\n gd_file_id text not null,\n hash text not null,\n constraint record_managerHS_pkey primary key (id)\n) TABLESPACE pg_default;"
},
"typeVersion": 1
},
{
"id": "4e8a1b14-2fd5-4dfc-89f4-73898134d384",
"name": "Edge Función",
"type": "n8n-nodes-base.httpRequest",
"position": [
-1552,
-544
],
"parameters": {
"url": "Your Edge Function URL Here",
"method": "POST",
"options": {
"redirect": {
"redirect": {}
}
},
"jsonBody": "={\n \"query_text\": \"{{ $('When Executed by Another Workflow').item.json.query }}\",\n \"query_embedding\": [{{ $json.data[0].embedding }}],\n \"match_count\": 5, \n \"full_text_weight\": 1.0,\n \"semantic_weight\": 1.0,\n \"rrf_k\": 50\n } ",
"sendBody": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth"
},
"credentials": {
"httpHeaderAuth": {
"id": "T59KJDlDMiYYary2",
"name": "Supabase CHRAG"
}
},
"typeVersion": 4.2,
"alwaysOutputData": true
},
{
"id": "cf18ef2b-6044-4526-9f0f-b1ec4d7a547d",
"name": "Call My Sub-workflow",
"type": "n8n-nodes-base.executeWorkflow",
"position": [
-656,
336
],
"parameters": {
"options": {},
"workflowId": {
"__rl": true,
"mode": "list",
"value": "OB2T8YYdXtHcujuT",
"cachedResultName": "My Sub-workflow"
},
"workflowInputs": {
"value": {
"content": "={{ $json.content }}",
"file_id": "={{ $json.file_id }}",
"fileName": "={{ $json.fileName }}",
"documentSummary": "={{ $json.documentSummary }}"
},
"schema": [
{
"id": "content",
"display": true,
"removed": false,
"required": false,
"displayName": "content",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "documentSummary",
"display": true,
"removed": false,
"required": false,
"displayName": "documentSummary",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "file_id",
"display": true,
"removed": false,
"required": false,
"displayName": "file_id",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "fileName",
"display": true,
"removed": false,
"required": false,
"displayName": "fileName",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"content",
"documentSummary",
"file_id",
"fileName"
],
"attemptToConvertTypes": false,
"convertFieldsToString": true
}
},
"typeVersion": 1.2
},
{
"id": "61e693a0-bebc-4f32-8531-67110fc08e38",
"name": "Supabase Almacén de vectores1",
"type": "@n8n/n8n-nodes-langchain.vectorStoreSupabase",
"position": [
1440,
336
],
"parameters": {
"mode": "insert",
"options": {},
"tableName": {
"__rl": true,
"mode": "list",
"value": "documentshs",
"cachedResultName": "documentshs"
}
},
"credentials": {
"supabaseApi": {
"id": "GZCrvWKfz1aQNVve",
"name": "Supabase - RAG"
}
},
"typeVersion": 1.3
},
{
"id": "7588feea-e4d2-4a67-91a8-2a35d4439293",
"name": "Incrustaciones OpenAI1",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
1440,
512
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "QsPyEUltWeliSiFb",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "db23a77d-2805-421d-a3c0-43de5a78e0a5",
"name": "Default Data Loader",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
1568,
528
],
"parameters": {
"options": {
"metadata": {
"metadataValues": [
{
"name": "file_id",
"value": "={{ $('Metadata').item.json.file_id }}"
},
{
"name": "motorsport_category",
"value": "={{ $('Metadata').item.json.motorsportCategory }}"
},
{
"name": "file_name",
"value": "={{ $('Metadata').item.json.fileName }}"
},
{
"name": "file_summary",
"value": "={{ $('Metadata').item.json.documentSummary }}"
}
]
}
},
"textSplittingMode": "custom"
},
"typeVersion": 1.1
},
{
"id": "fa1ce78e-ef3c-45e9-9b89-b6afa3e3a119",
"name": "Recursive Character Text Splitter",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
1536,
656
],
"parameters": {
"options": {},
"chunkSize": 1400
},
"typeVersion": 1
},
{
"id": "c4771f8f-dabe-4815-8fe2-d862234cbec7",
"name": "Recursive Splitter2",
"type": "n8n-nodes-base.code",
"position": [
-80,
336
],
"parameters": {
"mode": "runOnceForEachItem",
"jsCode": "const chunkSize = 1000;\nconst chunkOverlap = 200;\nconst text = $input.item.json.content.replace(/\\n/, '');\n\nconst chunks = [];\nlet remainingText = text;\n\nwhile (remainingText.length > 0) {\n let splitPoint;\n\n // Try splitting at paragraph level first\n splitPoint = remainingText.lastIndexOf(\"\\n\\n\", chunkSize);\n \n // If no paragraph split, try splitting at sentence level\n if (splitPoint === -1) {\n splitPoint = remainingText.lastIndexOf(\". \", chunkSize);\n }\n\n // If no sentence split, try splitting at word level\n if (splitPoint === -1) {\n splitPoint = remainingText.lastIndexOf(\" \", chunkSize);\n }\n\n // If still no split point, force cut at chunkSize\n if (splitPoint === -1 || splitPoint < chunkSize * 0.5) { \n splitPoint = chunkSize; // Hard split if no good split point\n }\n\n // Extract chunk and adjust remaining text with overlap\n let chunk = remainingText.substring(0, splitPoint).trim();\n chunks.push(chunk);\n\n // Move the pointer forward while keeping the overlap\n remainingText = remainingText.substring(Math.max(0, splitPoint - chunkOverlap)).trim();\n\n // Break if remaining text is too small to form another chunk\n if (remainingText.length < chunkSize * 0.2) {\n chunks.push(remainingText);\n break;\n }\n}\n\nreturn { chunks };"
},
"typeVersion": 2
},
{
"id": "0969dc28-0e90-47ad-9dde-b4425978a6eb",
"name": "Split Out",
"type": "n8n-nodes-base.splitOut",
"position": [
128,
336
],
"parameters": {
"options": {},
"fieldToSplitOut": "chunks"
},
"typeVersion": 1
},
{
"id": "b279aabb-d27f-44d4-9290-e0bf9abca567",
"name": "Establecer Up Chunks for Embedding",
"type": "n8n-nodes-base.set",
"position": [
912,
336
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "caed5bb3-bd1e-475f-94ad-db0b73cdedf0",
"name": "text",
"type": "string",
"value": "={{ $json.text }} \n"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "2f58e5f1-afe1-4e34-8cf1-e02f932a2e99",
"name": "Metadata",
"type": "n8n-nodes-base.set",
"position": [
-288,
336
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "93527bdc-6f91-4942-b5da-d7d5f1a67f9d",
"name": "content",
"type": "string",
"value": "={{ $json.content }}"
},
{
"id": "15ac4402-e7a1-40fc-a45d-bafd8302358a",
"name": "documentSummary",
"type": "string",
"value": "={{ $json.documentSummary }}"
},
{
"id": "79781e9e-8d64-4ebb-b96a-5d9954e62939",
"name": "motorsportCategory",
"type": "string",
"value": "={{ $json.motorsportCategory }}"
},
{
"id": "ca42a5a1-d11b-4a1e-a9f1-b696d31b4251",
"name": "file_id",
"type": "string",
"value": "={{ $json.file_id }}"
},
{
"id": "97242570-a638-454d-8d5e-62a1eb6c8376",
"name": "fileName",
"type": "string",
"value": "={{ $json.fileName }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "02d36503-b3ad-451b-8f90-9ee50d9e3c53",
"name": "Esperar",
"type": "n8n-nodes-base.wait",
"position": [
1104,
336
],
"webhookId": "9ddc5ae1-c2d9-4031-aa38-dafc7cdda091",
"parameters": {},
"typeVersion": 1.1
},
{
"id": "f0e1c571-d615-4942-a9cc-2529aa401cef",
"name": "Add Context",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
576,
336
],
"parameters": {
"text": "=<document> \n{{ $('Metadata').item.json.content}}\n</document> \n\nHere is the chunk we want to situate within the overall document:\n\n<chunk> \n{{ $('Loop Over Items2').item.json.chunks }}\n</chunk> \n\nPlease:\n- Provide a short and succinct **context** to situate this chunk within the document for improved search retrieval.\n- Return the **original chunk** exactly as provided unless a correction is necessary.\n- If the chunk contains an **incomplete number, percentage, or entity**, correct it using the full document.\n- If part of a **sentence is cut off**, reconstruct the missing words only if necessary for clarity.\n- If the chunk is part of a table, include the complete table entry to maintain data integrity\n- Do not add any additional explanations or formatting beyond the required output.\n\nFill in the following format:\n[succinct context] : [original chunk or corrected version if necessary]\n\nYour response should contain only the text that replaces these placeholders, without including the placeholder labels themselves.",
"promptType": "define"
},
"typeVersion": 1.5
},
{
"id": "9153a959-d4a9-4392-a072-8db62ecd4008",
"name": "Modelo de chat OpenAI2",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
576,
544
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1-nano",
"cachedResultName": "gpt-4.1-nano"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "QsPyEUltWeliSiFb",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "25cb00db-559f-4eb0-baf6-3118fc6c6bf0",
"name": "Recorrer elementos2",
"type": "n8n-nodes-base.splitInBatches",
"position": [
352,
336
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "756c06ae-1b66-44a0-b4a6-076856cf01b5",
"name": "Agregar2",
"type": "n8n-nodes-base.aggregate",
"position": [
544,
80
],
"parameters": {
"options": {},
"fieldsToAggregate": {
"fieldToAggregate": [
{}
]
}
},
"typeVersion": 1
},
{
"id": "1b2f5f20-f2f3-49c4-900a-d63d297b3fc2",
"name": "Nota adhesiva5",
"type": "n8n-nodes-base.stickyNote",
"position": [
-320,
224
],
"parameters": {
"width": 176,
"height": 280,
"content": "### Set up data\n"
},
"typeVersion": 1
},
{
"id": "a321d862-fcb5-4895-bb44-2f1d038c4614",
"name": "Nota adhesiva13",
"type": "n8n-nodes-base.stickyNote",
"position": [
-112,
224
],
"parameters": {
"width": 356,
"height": 280,
"content": "### Chuck document into multiple chunks based chunk size"
},
"typeVersion": 1
},
{
"id": "dfb50197-9be2-4189-ab3c-0f11de6b62c1",
"name": "Nota adhesiva21",
"type": "n8n-nodes-base.stickyNote",
"position": [
544,
224
],
"parameters": {
"width": 264,
"height": 280,
"content": "### Add context to each chunk\n"
},
"typeVersion": 1
},
{
"id": "48bbb8a8-56de-4e68-acf2-beb25a583145",
"name": "Nota adhesiva22",
"type": "n8n-nodes-base.stickyNote",
"position": [
832,
224
],
"parameters": {
"width": 420,
"height": 284,
"content": "### Set up text chunks and add timer so create limits are not reached"
},
"typeVersion": 1
},
{
"id": "044811b8-f03e-4954-a6b0-1522030aa109",
"name": "Nota adhesiva23",
"type": "n8n-nodes-base.stickyNote",
"position": [
1344,
224
],
"parameters": {
"width": 472,
"height": 576,
"content": "### Upsert into vector database."
},
"typeVersion": 1
},
{
"id": "57986be6-d5b8-47d8-8e14-f9be28282e59",
"name": "Nota adhesiva24",
"type": "n8n-nodes-base.stickyNote",
"position": [
-352,
64
],
"parameters": {
"color": 3,
"width": 2192,
"height": 752,
"content": "# This is the Call My Sub-Workflow "
},
"typeVersion": 1
},
{
"id": "f28c07f0-e1d7-482f-bacc-bd2bc3ba011b",
"name": "Nota adhesiva4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-6000,
-784
],
"parameters": {
"width": 752,
"height": 752,
"content": "# Workflow Summary\n\n### This automation keeps your Supabase vector database synchronized with documents stored in Google Drive, while also making the data contextual and vector based for better retrieval.\n\n### When a file is added or modified, the workflow extracts its text, splits it into smaller chunks, and enriches each chunk with contextual metadata (such as summaries and document details). It then generates embeddings using OpenAI and stores both the vector data and metadata in Supabase. If a file changes, the old records are replaced with updated, contextualized content.\n\n### The result is a continuously updated and context-aware vector database, enabling highly accurate hybrid search and retrieval. \n\n\n# To setup\n\n## 1. Connect Google Drive\n•\tCreate a Google Drive folder to watch.\n•\tConnect your Google Drive account in n8n and authorize access.\n•\tPoint the Google Drive Trigger node to this folder (new/modified files trigger the flow).\n\n## 2. Configure Supabase\n•\tPlease refer to the Setting Up Supabase Sticky Note. \n\n## 3. Connect OpenAI (or your embedding model)\n•\tAdd your OpenAI API key in n8n credentials.\n"
},
"typeVersion": 1
},
{
"id": "7c719413-7945-4e8e-9db2-02c6f3ee49c2",
"name": "Nota adhesiva26",
"type": "n8n-nodes-base.stickyNote",
"position": [
-3808,
144
],
"parameters": {
"width": 150,
"height": 304,
"content": "### Loop over each item, as more than 1 file can be placed in the Google Drive"
},
"typeVersion": 1
},
{
"id": "f5d30b0f-d7cc-4574-9939-9a53e7b02d12",
"name": "Nota adhesiva28",
"type": "n8n-nodes-base.stickyNote",
"position": [
-3568,
144
],
"parameters": {
"width": 160,
"height": 304,
"content": "### Download file"
},
"typeVersion": 1
},
{
"id": "f9c3a219-dbf0-470a-a54a-2c5775da45c4",
"name": "Nota adhesiva29",
"type": "n8n-nodes-base.stickyNote",
"position": [
-3376,
144
],
"parameters": {
"width": 160,
"height": 304,
"content": "### Extract text from pdf"
},
"typeVersion": 1
},
{
"id": "aced0ee1-a1d5-40fd-b866-c2640136802e",
"name": "Nota adhesiva30",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1840,
-96
],
"parameters": {
"width": 176,
"height": 304,
"content": "### Create new record in record manager since file is new and doesn't exist in database"
},
"typeVersion": 1
},
{
"id": "ae132431-fb89-45b5-9849-96812a46dcfd",
"name": "Nota adhesiva25",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2592,
-832
],
"parameters": {
"width": 336,
"height": 208,
"content": "## AI Agent to communicate with the database"
},
"typeVersion": 1
},
{
"id": "c8d17104-e110-453d-97ca-e8e79bf589c1",
"name": "Embedding",
"type": "n8n-nodes-base.httpRequest",
"position": [
-1792,
-544
],
"parameters": {
"url": "https://api.openai.com/v1/embeddings",
"method": "POST",
"options": {},
"sendBody": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "input",
"value": "={{ $json.query }}"
},
{
"name": "model",
"value": "text-embedding-3-small"
}
]
},
"genericAuthType": "httpHeaderAuth"
},
"credentials": {
"httpHeaderAuth": {
"id": "IZ2NWEGrJPwf73xf",
"name": "Openai"
}
},
"typeVersion": 4.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "60d22f47-01bc-4326-b282-0d742ef48480",
"connections": {
"81fc8e77-f1fb-4914-87b7-489bdcdf3f9d": {
"main": [
[
{
"node": "9561c9dd-0b82-4cdb-bed0-a3307d206394",
"type": "main",
"index": 0
}
]
]
},
"Wait": {
"main": [
[
{
"node": "Supabase Vector Store1",
"type": "main",
"index": 0
}
]
]
},
"Switch": {
"main": [
[
{
"node": "cc825e4c-1f68-4688-8e32-5d08b3aab1ac",
"type": "main",
"index": 0
}
],
[
{
"node": "10062467-974d-4103-aeb3-bff32d0c6e3f",
"type": "main",
"index": 0
}
],
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"2f58e5f1-afe1-4e34-8cf1-e02f932a2e99": {
"main": [
[
{
"node": "c4771f8f-dabe-4815-8fe2-d862234cbec7",
"type": "main",
"index": 0
}
]
]
},
"Set Text": {
"main": [
[
{
"node": "e145b247-04d6-40f9-b3ab-7ad034aa0a31",
"type": "main",
"index": 0
}
]
]
},
"Aggregate": {
"main": [
[
{
"node": "40aa27bb-4577-4d2d-abc4-0ed103fc0cbd",
"type": "main",
"index": 0
}
]
]
},
"c8d17104-e110-453d-97ca-e8e79bf589c1": {
"main": [
[
{
"node": "Edge Function",
"type": "main",
"index": 0
}
]
]
},
"0969dc28-0e90-47ad-9dde-b4425978a6eb": {
"main": [
[
{
"node": "Loop Over Items2",
"type": "main",
"index": 0
}
]
]
},
"Aggregate1": {
"main": [
[
{
"node": "0c76dd9b-be10-4fdd-8536-ea3eb75a6cba",
"type": "main",
"index": 0
}
]
]
},
"f0e1c571-d615-4942-a9cc-2529aa401cef": {
"main": [
[
{
"node": "Set Up Chunks for Embedding",
"type": "main",
"index": 0
}
]
]
},
"317048f7-1423-4922-ac19-ad1b79152359": {
"main": [
[
{
"node": "3e9028df-ff29-4599-9ae9-c08a3811f047",
"type": "main",
"index": 0
}
]
]
},
"e145b247-04d6-40f9-b3ab-7ad034aa0a31": {
"main": [
[
{
"node": "27074acb-2256-4b79-a093-df35755ca0e8",
"type": "main",
"index": 0
}
]
]
},
"c41851a0-ba52-432d-ae00-752bb630cead": {
"main": [
[
{
"node": "Loop Over Items1",
"type": "main",
"index": 0
}
]
]
},
"Simple Memory": {
"ai_memory": [
[
{
"node": "AI Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"03516980-317e-483d-9471-6cf9e3148415": {
"main": [
[
{
"node": "Loop Over Items1",
"type": "main",
"index": 0
}
]
]
},
"Basic LLM Chain": {
"main": [
[
{
"node": "Set Text for Chunking",
"type": "main",
"index": 0
}
]
]
},
"Loop Over Items": {
"main": [
[],
[
{
"node": "317048f7-1423-4922-ac19-ad1b79152359",
"type": "main",
"index": 0
}
]
]
},
"Loop Over Items1": {
"main": [
[],
[
{
"node": "84ac45bc-27c8-4fce-8e03-be8c9cf18fe8",
"type": "main",
"index": 0
}
]
]
},
"Loop Over Items2": {
"main": [
[
{
"node": "Aggregate2",
"type": "main",
"index": 0
}
],
[
{
"node": "f0e1c571-d615-4942-a9cc-2529aa401cef",
"type": "main",
"index": 0
}
]
]
},
"3e9028df-ff29-4599-9ae9-c08a3811f047": {
"main": [
[
{
"node": "Set Text",
"type": "main",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Embeddings OpenAI1": {
"ai_embedding": [
[
{
"node": "Supabase Vector Store1",
"type": "ai_embedding",
"index": 0
}
]
]
},
"OpenAI Chat Model1": {
"ai_languageModel": [
[
{
"node": "Basic LLM Chain",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"OpenAI Chat Model2": {
"ai_languageModel": [
[
{
"node": "f0e1c571-d615-4942-a9cc-2529aa401cef",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Query Vector Store": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"a791c6a2-1311-40cc-837e-c875425774cc": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"db23a77d-2805-421d-a3c0-43de5a78e0a5": {
"ai_document": [
[
{
"node": "Supabase Vector Store1",
"type": "ai_document",
"index": 0
}
]
]
},
"c4771f8f-dabe-4815-8fe2-d862234cbec7": {
"main": [
[
{
"node": "0969dc28-0e90-47ad-9dde-b4425978a6eb",
"type": "main",
"index": 0
}
]
]
},
"cf18ef2b-6044-4526-9f0f-b1ec4d7a547d": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"27074acb-2256-4b79-a093-df35755ca0e8": {
"main": [
[
{
"node": "Switch",
"type": "main",
"index": 0
}
]
]
},
"Set Text for Chunking": {
"main": [
[
{
"node": "cf18ef2b-6044-4526-9f0f-b1ec4d7a547d",
"type": "main",
"index": 0
}
]
]
},
"40aa27bb-4577-4d2d-abc4-0ed103fc0cbd": {
"main": [
[
{
"node": "Basic LLM Chain",
"type": "main",
"index": 0
}
]
]
},
"84ac45bc-27c8-4fce-8e03-be8c9cf18fe8": {
"main": [
[
{
"node": "81fc8e77-f1fb-4914-87b7-489bdcdf3f9d",
"type": "main",
"index": 0
}
]
]
},
"Supabase Vector Store1": {
"main": [
[
{
"node": "Loop Over Items2",
"type": "main",
"index": 0
}
]
]
},
"10062467-974d-4103-aeb3-bff32d0c6e3f": {
"main": [
[
{
"node": "Aggregate",
"type": "main",
"index": 0
}
]
]
},
"9561c9dd-0b82-4cdb-bed0-a3307d206394": {
"main": [
[
{
"node": "Aggregate1",
"type": "main",
"index": 0
}
]
]
},
"c99060a8-fe04-44c8-86ad-76ad9c0f2f6c": {
"ai_outputParser": [
[
{
"node": "Basic LLM Chain",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
},
"Set Up Chunks for Embedding": {
"main": [
[
{
"node": "Wait",
"type": "main",
"index": 0
}
]
]
},
"cc825e4c-1f68-4688-8e32-5d08b3aab1ac": {
"main": [
[
{
"node": "Basic LLM Chain",
"type": "main",
"index": 0
}
]
]
},
"fa1ce78e-ef3c-45e9-9b89-b6afa3e3a119": {
"ai_textSplitter": [
[
{
"node": "db23a77d-2805-421d-a3c0-43de5a78e0a5",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"3024e04e-86c4-43d6-819d-22f45ef40750": {
"main": [
[
{
"node": "c8d17104-e110-453d-97ca-e8e79bf589c1",
"type": "main",
"index": 0
}
]
]
},
"0c76dd9b-be10-4fdd-8536-ea3eb75a6cba": {
"main": [
[
{
"node": "c41851a0-ba52-432d-ae00-752bb630cead",
"type": "main",
"index": 0
}
]
]
}
}
}¿Cómo usar este flujo de trabajo?
Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.
¿En qué escenarios es adecuado este flujo de trabajo?
Avanzado - RAG de IA, IA Multimodal
¿Es de pago?
Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.
Flujos de trabajo relacionados recomendados
Michael Taleb
@michaeltalebn8n developer helping businesses save time and scale by automating complex business processes with n8n and smart integrations.
Compartir este flujo de trabajo