Generar SQL de BigQuery a partir de consultas en lenguaje natural con chat GPT-4o

Intermedio

Este es unInternal Wiki, AI Chatbotflujo de automatización del dominio deautomatización que contiene 13 nodos.Utiliza principalmente nodos como Code, Merge, Aggregate, GoogleBigQuery, Agent. Usar el chat de GPT-4o para generar SQL de BigQuery a partir de consultas en lenguaje natural

Requisitos previos
  • Clave de API de OpenAI
Vista previa del flujo de trabajo
Visualización de las conexiones entre nodos, con soporte para zoom y panorámica
Exportar flujo de trabajo
Copie la siguiente configuración JSON en n8n para importar y usar este flujo de trabajo
{
  "meta": {
    "instanceId": "efb474b59b0341d7791932605bd9ff04a6c7ed9941fdd53dc4a2e4b99a6f9439"
  },
  "nodes": [
    {
      "id": "1045c9ed-ad7c-45b8-94f7-27139c158f92",
      "name": "Memoria Simple",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        580,
        80
      ],
      "parameters": {
        "sessionKey": "={{ $('Embedable chat for users to ask questions of bigquery').item.json.sessionId }}",
        "sessionIdType": "customKey"
      },
      "typeVersion": 1.3
    },
    {
      "id": "3fb1381a-42b6-4459-86f1-9f4c25aba299",
      "name": "Modelo de Chat OpenAI",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        440,
        80
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o",
          "cachedResultName": "gpt-4o"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "ghJTvay8CvwXDsXz",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "640fb030-18d8-405b-ab1d-37d1fd625ef8",
      "name": "Analizador de Salida Estructurada",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        720,
        60
      ],
      "parameters": {
        "jsonSchemaExample": "{\n\t\"query\": \"sql query and no other text\"\n}"
      },
      "typeVersion": 1.2
    },
    {
      "id": "cd9edc59-cb69-4e32-8984-026f6c0c0331",
      "name": "Nota Adhesiva",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -460,
        -620
      ],
      "parameters": {
        "width": 1700,
        "height": 1000,
        "content": "Talk-to-Data: Instant BigQuery SQL Generator\n### Need more help?\n- **LinkedIn:** https://www.linkedin.com/in/robertbreen\n- **Email:** rbreen@ynteractive.com  "
      },
      "typeVersion": 1
    },
    {
      "id": "9fab1e8c-d541-4972-976e-34e596818a9f",
      "name": "Nota Adhesiva1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1280,
        -620
      ],
      "parameters": {
        "color": 5,
        "width": 780,
        "height": 1000,
        "content": "\n#### ⚙️ Setup Instructions\n\n1. **Import the workflow**  \n   - n8n → **Workflows → Import from File** (or **Paste JSON**) → **Save**\n\n2. **Add credentials**  \n   | Service | Where to create credentials | Node(s) to update |\n   |---------|----------------------------|-------------------|\n   | **OpenAI** | <https://platform.openai.com> → Create API key | **OpenAI Chat Model** |\n   | **Google BigQuery** | Google Cloud Console → IAM & Admin → Service Account JSON key | **Google BigQuery** (schema + query) |\n\n3. **Point the schema fetcher to your dataset**  \n   - In **Google BigQuery1** you’ll see:  \n     ```sql\n     SELECT table_name, column_name, data_type\n     FROM `n8nautomation-453001.email_leads_schema.INFORMATION_SCHEMA.COLUMNS`\n     ```  \n   - Replace **`n8nautomation-453001.email_leads_schema`** with **`YOUR_PROJECT.YOUR_DATASET`**.  \n   - Keep the rest of the query the same—BigQuery’s `INFORMATION_SCHEMA` always surfaces `table_name`, `column_name`, and `data_type`.\n\n4. **Update the execution node**  \n   - Open **Google BigQuery** (the second BigQuery node).  \n   - In **Project ID** select your project.  \n   - The **SQL Query** field is already `{{ $json.output.query }}` so it will run whatever the AI returns.\n\n5. **(Optional)Embed the chat interface**  \n\n6. **Test end-to-end**  \n   - Open the embedded chat widget.  \n   - Ask: *“How many distinct email leads were created last week?”*  \n   - After a few seconds the workflow will return a table of results—or an error if the schema lacks the requested fields.\n   - As specific questions about your data\n\n8. **Activate**  \n   - Toggle **Active** so the chat assistant is available 24/7.\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "18e74b72-1776-4d60-a81e-a2c5f589794d",
      "name": "Chat integrable para que usuarios pregunten sobre bigquery",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -380,
        -280
      ],
      "webhookId": "20173599-7d16-408b-aab0-6252b05a516b",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "b57350a1-cd14-424a-b027-381619e738f8",
      "name": "Mostrar todos los nombres de tablas y columnas en el esquema",
      "type": "n8n-nodes-base.googleBigQuery",
      "position": [
        -200,
        -80
      ],
      "parameters": {
        "options": {},
        "sqlQuery": "SELECT \n  table_name,\n  column_name,\n  data_type\nFROM `n8nautomation-453001.email_leads_schema.INFORMATION_SCHEMA.COLUMNS`\n",
        "projectId": {
          "__rl": true,
          "mode": "list",
          "value": "n8nautomation-453001",
          "cachedResultUrl": "https://console.cloud.google.com/bigquery?project=n8nautomation-453001",
          "cachedResultName": "n8nAutomation"
        }
      },
      "credentials": {
        "googleBigQueryOAuth2Api": {
          "id": "92PxWUCndZ2LZK34",
          "name": "Google BigQuery account"
        }
      },
      "typeVersion": 2.1
    },
    {
      "id": "4d8e1a77-bc7b-417a-a528-635c92d7dd16",
      "name": "Combinar en un campo",
      "type": "n8n-nodes-base.aggregate",
      "position": [
        -40,
        -200
      ],
      "parameters": {
        "options": {},
        "aggregate": "aggregateAllItemData"
      },
      "typeVersion": 1
    },
    {
      "id": "177be4fc-97a4-429c-8f3d-27349aad9fdd",
      "name": "Convertir nombres de tablas y columnas en texto único para el agente",
      "type": "n8n-nodes-base.code",
      "position": [
        140,
        -300
      ],
      "parameters": {
        "jsCode": "return [\n  {\n    json: {\n      text: items.map(item => JSON.stringify(item.json)).join('\\n'),\n    },\n  },\n];\n"
      },
      "typeVersion": 2
    },
    {
      "id": "650de27a-f596-4b13-9ef7-8c86494fd9ce",
      "name": "Combinar nombres de tabla con la pregunta del usuario",
      "type": "n8n-nodes-base.merge",
      "position": [
        280,
        -440
      ],
      "parameters": {
        "mode": "combine",
        "options": {},
        "combineBy": "combineAll"
      },
      "typeVersion": 3.2
    },
    {
      "id": "82289b5e-96bf-41c9-91d0-ee70238c57da",
      "name": "Agente de IA - Escribir consulta SQL",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        460,
        -160
      ],
      "parameters": {
        "text": "=user question: {{ $('Embedable chat for users to ask questions of bigquery').item.json.chatInput }}\nTable and column names: {{ $json.text }}",
        "options": {
          "systemMessage": "=You are a helpful AI assistant that writes valid SQL queries for Google BigQuery.\n\nYou will be given:\n- A user’s question,\n- A list of available table names and column names. {{ $json.text }}\n\nYour task is to:\n1. Write a syntactically correct BigQuery SQL query that best answers the user's question,\n2. Only use table and column names that appear in the provided schema — do not guess or invent names,\n3. Make the best possible guess about which table and columns to use *from the given list only*,\n4. Return your output in a strict JSON format with one key: \"query\".\n\n⚠️ Do NOT invent table or column names.\n⚠️ If a relevant field does not exist, make the best effort to answer with what's available, or omit that part.\n⚠️ Do NOT include any explanation, notes, or comments — only the final JSON.\n\n---\n\n\n**this schema must be written before the table name  Schema:**\n\n`n8nautomation-453001.email_leads_schema.\n\noutput data in json like this. \n{\n\t\"query\": \"sql query and no other text\"\n} "
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 2
    },
    {
      "id": "adc7ad4c-4a17-4be7-975b-cdc2be4c116e",
      "name": "Ejecutar consulta contra el esquema",
      "type": "n8n-nodes-base.googleBigQuery",
      "onError": "continueErrorOutput",
      "position": [
        820,
        -280
      ],
      "parameters": {
        "options": {},
        "sqlQuery": "{{ $json.output.query }}",
        "projectId": {
          "__rl": true,
          "mode": "list",
          "value": "n8nautomation-453001",
          "cachedResultUrl": "https://console.cloud.google.com/bigquery?project=n8nautomation-453001",
          "cachedResultName": "n8nAutomation"
        }
      },
      "credentials": {
        "googleBigQueryOAuth2Api": {
          "id": "92PxWUCndZ2LZK34",
          "name": "Google BigQuery account"
        }
      },
      "typeVersion": 2.1
    },
    {
      "id": "ab6bb5b4-8ea1-40ac-a293-213a8f03b114",
      "name": "Pedir al usuario que intente otra pregunta",
      "type": "n8n-nodes-base.code",
      "position": [
        1080,
        40
      ],
      "parameters": {
        "jsCode": "return [\n  {\n    json: {\n      message: \"That query didn't work. Try another question.\"\n    }\n  }\n];\n"
      },
      "typeVersion": 2
    }
  ],
  "pinData": {},
  "connections": {
    "1045c9ed-ad7c-45b8-94f7-27139c158f92": {
      "ai_memory": [
        [
          {
            "node": "82289b5e-96bf-41c9-91d0-ee70238c57da",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "3fb1381a-42b6-4459-86f1-9f4c25aba299": {
      "ai_languageModel": [
        [
          {
            "node": "82289b5e-96bf-41c9-91d0-ee70238c57da",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "4d8e1a77-bc7b-417a-a528-635c92d7dd16": {
      "main": [
        [
          {
            "node": "177be4fc-97a4-429c-8f3d-27349aad9fdd",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "adc7ad4c-4a17-4be7-975b-cdc2be4c116e": {
      "main": [
        [],
        [
          {
            "node": "ab6bb5b4-8ea1-40ac-a293-213a8f03b114",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "640fb030-18d8-405b-ab1d-37d1fd625ef8": {
      "ai_outputParser": [
        [
          {
            "node": "82289b5e-96bf-41c9-91d0-ee70238c57da",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "82289b5e-96bf-41c9-91d0-ee70238c57da": {
      "main": [
        [
          {
            "node": "adc7ad4c-4a17-4be7-975b-cdc2be4c116e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "650de27a-f596-4b13-9ef7-8c86494fd9ce": {
      "main": [
        [
          {
            "node": "82289b5e-96bf-41c9-91d0-ee70238c57da",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b57350a1-cd14-424a-b027-381619e738f8": {
      "main": [
        [
          {
            "node": "4d8e1a77-bc7b-417a-a528-635c92d7dd16",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "18e74b72-1776-4d60-a81e-a2c5f589794d": {
      "main": [
        [
          {
            "node": "b57350a1-cd14-424a-b027-381619e738f8",
            "type": "main",
            "index": 0
          },
          {
            "node": "650de27a-f596-4b13-9ef7-8c86494fd9ce",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "177be4fc-97a4-429c-8f3d-27349aad9fdd": {
      "main": [
        [
          {
            "node": "650de27a-f596-4b13-9ef7-8c86494fd9ce",
            "type": "main",
            "index": 1
          }
        ]
      ]
    }
  }
}
Preguntas frecuentes

¿Cómo usar este flujo de trabajo?

Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.

¿En qué escenarios es adecuado este flujo de trabajo?

Intermedio - Wiki interno, Chatbot de IA

¿Es de pago?

Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.

Información del flujo de trabajo
Nivel de dificultad
Intermedio
Número de nodos13
Categoría2
Tipos de nodos10
Descripción de la dificultad

Adecuado para usuarios con experiencia intermedia, flujos de trabajo de complejidad media con 6-15 nodos

Autor
Robert Breen

Robert Breen

@rbreen

Professional services consultant with over 10 years of experience solving complex business problems across industries. I specialize in n8n and process automation—designing custom workflows that integrate tools like Google Calendar, Airtable, GPT, and internal systems. Whether you need to automate scheduling, sync data, or streamline operations, I build solutions that save time and drive results.

Enlaces externos
Ver en n8n.io

Compartir este flujo de trabajo

Categorías

Categorías: 34