Dokumentenbasierter KI-Chatbot mit RAG, OpenAI und Cohere-Reranker
Experte
Dies ist ein Internal Wiki, AI RAG-Bereich Automatisierungsworkflow mit 18 Nodes. Hauptsächlich werden GoogleDrive, ManualTrigger, Agent, ExtractFromFile, ChatTrigger und andere Nodes verwendet. Dokumentenbasierte KI-Chatbot mit RAG, OpenAI und Cohere-Ranker
Voraussetzungen
- •Google Drive API-Anmeldedaten
- •OpenAI API Key
- •Supabase URL und API Key
Verwendete Nodes (18)
Kategorie
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
"meta": {
"instanceId": "6052a1b29f061469e8139dae44556603650099c3365d7598798f132ae827fa1c"
},
"nodes": [
{
"id": "a8afd8c2-2bfd-49f3-9687-0d68c83db4ad",
"name": "Chat-Oberfläche",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
80,
100
],
"webhookId": "de210796-2512-4c20-97eb-87b7f05298cb",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "00c21cda-1193-4cf5-9681-bf21ac2b269c",
"name": "RAG-Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
300,
100
],
"parameters": {
"options": {
"systemMessage": "You are an intelligent assistant with access to a knowledge base. Always search for relevant information before answering questions. Be helpful, accurate, and cite your sources when providing information from the knowledge base."
}
},
"typeVersion": 2
},
{
"id": "c74d3fac-14ef-4809-b290-d0344db04c79",
"name": "KI-Modell (OpenAI)",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
180,
320
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4-mini"
},
"options": {}
},
"typeVersion": 1.2
},
{
"id": "e8a473c1-4934-491b-8283-80d48982d604",
"name": "Embedding-Suche",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
540,
460
],
"parameters": {
"options": {}
},
"typeVersion": 1.2
},
{
"id": "6fc17058-70f2-4bbe-a8b5-e35116f14853",
"name": "Konversationsspeicher",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
340,
320
],
"parameters": {
"contextWindowLength": 10
},
"typeVersion": 1.3
},
{
"id": "ba366390-61e3-4a25-8008-fb172145486a",
"name": "Dokumentelade-Trigger",
"type": "n8n-nodes-base.manualTrigger",
"position": [
100,
760
],
"parameters": {},
"typeVersion": 1
},
{
"id": "f97d305b-3a96-445c-ace2-535c60055a4f",
"name": "PDF von Drive herunterladen",
"type": "n8n-nodes-base.googleDrive",
"position": [
320,
760
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "url",
"value": "{{GOOGLE_DRIVE_FILE_URL}}"
},
"options": {},
"operation": "download"
},
"typeVersion": 3
},
{
"id": "9eec6cb6-f445-4add-8de9-1464b61dfa7a",
"name": "Dokumenten-Embeddings",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
700,
960
],
"parameters": {
"options": {}
},
"typeVersion": 1.2
},
{
"id": "e64b2357-0238-45ca-87bd-10f8deddd6e4",
"name": "Dokumententext verarbeiten",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
840,
960
],
"parameters": {
"options": {
"metadata": {
"metadataValues": [
{
"name": "source",
"value": "={{ $node['Download PDF from Drive'].json.name }}"
},
{
"name": "type",
"value": "pdf"
}
]
}
},
"jsonData": "={{ $json.text }}",
"jsonMode": "expressionData"
},
"typeVersion": 1.1
},
{
"id": "8b0645f9-dbcb-4613-9126-9efa824615bc",
"name": "Wissensdatenbank-Suche",
"type": "@n8n/n8n-nodes-langchain.vectorStoreSupabase",
"position": [
540,
320
],
"parameters": {
"mode": "retrieve-as-tool",
"topK": 10,
"options": {
"queryName": "{{MATCH_FUNCTION_NAME}}"
},
"tableName": {
"__rl": true,
"mode": "id",
"value": "{{VECTOR_TABLE_NAME}}"
},
"useReranker": true,
"toolDescription": "Use this tool to search for information in the knowledge base. Always use this before answering questions to ensure accurate, up-to-date responses."
},
"credentials": {
"supabaseApi": {
"id": "PgMEWpeDY6PHLFXp",
"name": "Supabase Zenithon Suporte IA"
}
},
"typeVersion": 1.3
},
{
"id": "4cb8869a-de07-44f5-8f79-9b3c1207d21c",
"name": "In Vektordatenbank speichern",
"type": "@n8n/n8n-nodes-langchain.vectorStoreSupabase",
"position": [
700,
760
],
"parameters": {
"mode": "insert",
"options": {
"queryName": "{{MATCH_FUNCTION_NAME}}"
},
"tableName": {
"__rl": true,
"mode": "id",
"value": "{{VECTOR_TABLE_NAME}}"
}
},
"typeVersion": 1.3
},
{
"id": "c8d8674d-ebe7-42fa-918e-ea9c5dc56b98",
"name": "PDF-Inhalt extrahieren",
"type": "n8n-nodes-base.extractFromFile",
"position": [
500,
760
],
"parameters": {
"options": {
"maxPages": 500
},
"operation": "pdf"
},
"typeVersion": 1
},
{
"id": "c5af8b70-bbda-4138-9598-dfd6c44a0eb5",
"name": "Cohere-Reranker",
"type": "@n8n/n8n-nodes-langchain.rerankerCohere",
"position": [
700,
460
],
"parameters": {},
"typeVersion": 1
},
{
"id": "c3af22b6-830c-43a6-9a8f-0f38f3dec647",
"name": "Hinweis: Chat-Trigger",
"type": "n8n-nodes-base.stickyNote",
"position": [
20,
-40
],
"parameters": {
"color": 5,
"width": 200,
"height": 120,
"content": "### 1️⃣ Chat Trigger\nReceives messages from users through the chat interface"
},
"typeVersion": 1
},
{
"id": "c3655d77-d3ee-4c21-8166-da08b15175d3",
"name": "Hinweis: RAG-Agent",
"type": "n8n-nodes-base.stickyNote",
"position": [
300,
-40
],
"parameters": {
"color": 5,
"width": 200,
"height": 120,
"content": "### 2️⃣ RAG Agent\nOrchestrates the conversation using tools and memory"
},
"typeVersion": 1
},
{
"id": "ba9f02ea-6def-433a-9ccc-6f0ec1a1792b",
"name": "Hinweis: Wissenssuche",
"type": "n8n-nodes-base.stickyNote",
"position": [
560,
180
],
"parameters": {
"color": 5,
"width": 200,
"height": 100,
"content": "### 3️⃣ Knowledge Search\nSearches the vector database for relevant information"
},
"typeVersion": 1
},
{
"id": "ba558d29-fa87-4a2d-a63f-64a768bb2efb",
"name": "Hinweis: Reranker",
"type": "n8n-nodes-base.stickyNote",
"position": [
820,
440
],
"parameters": {
"color": 5,
"width": 200,
"height": 100,
"content": "### 4️⃣ Reranker\nImproves search quality by reordering results"
},
"typeVersion": 1
},
{
"id": "0ff39f38-d67e-4517-8f5b-834c032383dd",
"name": "Hinweis: Konfiguration",
"type": "n8n-nodes-base.stickyNote",
"position": [
880,
0
],
"parameters": {
"color": 4,
"width": 260,
"height": 180,
"content": "### Configuration Variables\n\nReplace these in the workflow:\n- **GOOGLE_DRIVE_FILE_URL**\n- **VECTOR_TABLE_NAME**\n- **MATCH_FUNCTION_NAME**"
},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"a8afd8c2-2bfd-49f3-9687-0d68c83db4ad": {
"main": [
[
{
"node": "00c21cda-1193-4cf5-9681-bf21ac2b269c",
"type": "main",
"index": 0
}
]
]
},
"c5af8b70-bbda-4138-9598-dfd6c44a0eb5": {
"ai_reranker": [
[
{
"node": "8b0645f9-dbcb-4613-9126-9efa824615bc",
"type": "ai_reranker",
"index": 0
}
]
]
},
"c74d3fac-14ef-4809-b290-d0344db04c79": {
"ai_languageModel": [
[
{
"node": "00c21cda-1193-4cf5-9681-bf21ac2b269c",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"e8a473c1-4934-491b-8283-80d48982d604": {
"ai_embedding": [
[
{
"node": "8b0645f9-dbcb-4613-9126-9efa824615bc",
"type": "ai_embedding",
"index": 0
}
]
]
},
"6fc17058-70f2-4bbe-a8b5-e35116f14853": {
"ai_memory": [
[
{
"node": "00c21cda-1193-4cf5-9681-bf21ac2b269c",
"type": "ai_memory",
"index": 0
}
]
]
},
"9eec6cb6-f445-4add-8de9-1464b61dfa7a": {
"ai_embedding": [
[
{
"node": "4cb8869a-de07-44f5-8f79-9b3c1207d21c",
"type": "ai_embedding",
"index": 0
}
]
]
},
"c8d8674d-ebe7-42fa-918e-ea9c5dc56b98": {
"main": [
[
{
"node": "4cb8869a-de07-44f5-8f79-9b3c1207d21c",
"type": "main",
"index": 0
}
]
]
},
"8b0645f9-dbcb-4613-9126-9efa824615bc": {
"ai_tool": [
[
{
"node": "00c21cda-1193-4cf5-9681-bf21ac2b269c",
"type": "ai_tool",
"index": 0
}
]
]
},
"e64b2357-0238-45ca-87bd-10f8deddd6e4": {
"ai_document": [
[
{
"node": "4cb8869a-de07-44f5-8f79-9b3c1207d21c",
"type": "ai_document",
"index": 0
}
]
]
},
"ba366390-61e3-4a25-8008-fb172145486a": {
"main": [
[
{
"node": "f97d305b-3a96-445c-ace2-535c60055a4f",
"type": "main",
"index": 0
}
]
]
},
"f97d305b-3a96-445c-ace2-535c60055a4f": {
"main": [
[
{
"node": "c8d8674d-ebe7-42fa-918e-ea9c5dc56b98",
"type": "main",
"index": 0
}
]
]
}
}
}Häufig gestellte Fragen
Wie verwende ich diesen Workflow?
Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.
Für welche Szenarien ist dieser Workflow geeignet?
Experte - Internes Wiki, KI RAG
Ist es kostenpflichtig?
Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.
Verwandte Workflows
RAG-Nachberechnung
Dokumente mit Supabase, OpenAI und einem Cohere-Remankerer beantworten
Code
Google Drive
Manual Trigger
+
Code
Google Drive
Manual Trigger
26 NodesLuan Correia
Internes Wiki
All-Quellen-Wissensassistent mit Integration von Claude, RAG, Perplexity und Drive
Erstelle einen All-in-One-Wissensassistenten mit Claude, RAG, Perplexity und Drive integriert
Set
Switch
Google Drive
+
Set
Switch
Google Drive
38 NodesPaul
Internes Wiki
AI-Wissensdatenbank-Assistent mit OpenAI-, Supabase- und Google Drive-Dokumentensynchronisation
AI-Wissensdatenbank-Assistent mit OpenAI-, Supabase- und Google Drive-Dokumentensynchronisation
Set
Limit
Switch
+
Set
Limit
Switch
49 NodesAbdul Mir
Internes Wiki
Intelligentes Dokumenten-Frage-Antwort-System basierend auf Webhook, Pinecone + OpenAI + n8n
Dokumenten-Frage-Antwort-System mit OpenAI GPT, Pinecone-Vektordatenbank und Google Drive-Integration
Webhook
Google Drive
Manual Trigger
+
Webhook
Google Drive
Manual Trigger
30 NodesMohan Gopal
Internes Wiki
Dokumenten-RAG und Chat-Agent: Google Drive zu Qdrant mit Mistral OCR
Dokumenten-RAG und Chat-Agent: Google Drive zu Qdrant mit Mistral OCR
If
Set
Code
+
If
Set
Code
40 NodesDIGITAL BIZ TECH
Internes Wiki
Neuanordnung #1
Automatisierung der Kaltakquise-Pipeline für Verkäufe mit Apify, GPT-4o und WhatsApp
Set
Code
Webhook
+
Set
Code
Webhook
48 NodesKhairul Muhtadin
Lead-Pflege
Workflow-Informationen
Schwierigkeitsgrad
Experte
Anzahl der Nodes18
Kategorie2
Node-Typen12
Autor
Anderson Adelino
@andersonadelinoExterne Links
Auf n8n.io ansehen →
Diesen Workflow teilen