Intelligentes Dokumenten-Frage-Antwort-System basierend auf Webhook, Pinecone + OpenAI + n8n

Experte

Dies ist ein Internal Wiki, AI RAG-Bereich Automatisierungsworkflow mit 30 Nodes. Hauptsächlich werden Webhook, GoogleDrive, ManualTrigger, Agent, RespondToWebhook und andere Nodes verwendet. Dokumenten-Frage-Antwort-System mit OpenAI GPT, Pinecone-Vektordatenbank und Google Drive-Integration

Voraussetzungen
  • HTTP Webhook-Endpunkt (wird von n8n automatisch generiert)
  • Google Drive API-Anmeldedaten
  • OpenAI API Key
  • Pinecone API Key
Workflow-Vorschau
Visualisierung der Node-Verbindungen, mit Zoom und Pan
Workflow exportieren
Kopieren Sie die folgende JSON-Konfiguration und importieren Sie sie in n8n
{
  "id": "UVMlpwIIsDBBFclU",
  "meta": {
    "instanceId": "92e36925b2d06addd7a010605535ce53ac105737436355f7e52e2980c726ed3d",
    "templateCredsSetupCompleted": true
  },
  "name": "AI-Powered Document QA System using Webhook, Pinecone + OpenAI + n8n",
  "tags": [
    {
      "id": "Bv4R1pgV3YCnUGME",
      "name": "webhook",
      "createdAt": "2025-07-04T05:26:19.837Z",
      "updatedAt": "2025-07-04T05:26:19.837Z"
    },
    {
      "id": "lTpSGA7vnSvUGQs6",
      "name": "lovable",
      "createdAt": "2025-07-04T05:26:29.453Z",
      "updatedAt": "2025-07-04T05:26:29.453Z"
    },
    {
      "id": "oKGIn6U0wpeHShTN",
      "name": "working flow",
      "createdAt": "2025-06-02T06:27:44.762Z",
      "updatedAt": "2025-06-02T06:27:44.762Z"
    }
  ],
  "nodes": [
    {
      "id": "784badb8-0cf6-434d-9d5d-1670757b548b",
      "name": "Bei Klick auf 'Workflow ausführen'",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -300,
        -40
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "26b93e8c-0a72-4491-90fe-55b5f5da02a0",
      "name": "Google Drive",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        -80,
        -40
      ],
      "parameters": {
        "filter": {
          "folderId": {
            "__rl": true,
            "mode": "list",
            "value": "1NgITWoqBgLAVof9bxF0jIrVToQ9c919u",
            "cachedResultUrl": "https://drive.google.com/drive/folders/1NgITWoqBgLAVof9bxF0jIrVToQ9c919u",
            "cachedResultName": "contract document"
          }
        },
        "options": {},
        "resource": "fileFolder"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "RFbg76pQ49AUClT1",
          "name": "name"
        }
      },
      "typeVersion": 3
    },
    {
      "id": "21174f84-5f7b-45bc-944b-0f0a7c2ffd49",
      "name": "Google Drive1",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        140,
        -40
      ],
      "parameters": {
        "fileId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $json.id }}"
        },
        "options": {},
        "operation": "download"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "RFbg76pQ49AUClT1",
          "name": "name"
        }
      },
      "typeVersion": 3
    },
    {
      "id": "d84e6051-cc04-4f51-b9c3-0e69e2193571",
      "name": "Pinecone Vector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStorePinecone",
      "position": [
        360,
        -40
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "pineconeIndex": {
          "__rl": true,
          "mode": "list",
          "value": "package1536",
          "cachedResultName": "package1536"
        }
      },
      "credentials": {
        "pineconeApi": {
          "id": "id",
          "name": "PineconeApi account 2"
        }
      },
      "typeVersion": 1.3
    },
    {
      "id": "3185a781-28af-4ee0-be7b-2183b80ce0e3",
      "name": "Embeddings OpenAI",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        300,
        160
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "id",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "8eccc3bb-654f-4a92-8074-9d2418afae12",
      "name": "Default Data Loader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        500,
        180
      ],
      "parameters": {
        "options": {},
        "dataType": "binary",
        "textSplittingMode": "custom"
      },
      "typeVersion": 1.1
    },
    {
      "id": "9a6a4542-81f0-4fa6-b0fa-6fbfcf5fb3d3",
      "name": "Recursive Character Text Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        600,
        400
      ],
      "parameters": {
        "options": {},
        "chunkOverlap": 100
      },
      "typeVersion": 1
    },
    {
      "id": "60485603-13aa-46c8-9824-011b75d368bd",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -420,
        -180
      ],
      "parameters": {
        "width": 1300,
        "height": 980,
        "content": "## Document Loading \n1. Connect to Google Drive folder to access Contract Agreement Documents\n2. Download and Vectorize the Data using Vector Embedding \n3. Store in Pinecone Database"
      },
      "typeVersion": 1
    },
    {
      "id": "349466bc-c0c7-4e4e-9e9c-78554a3123ae",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -420,
        940
      ],
      "parameters": {
        "width": 1300,
        "height": 720,
        "content": "## Query Document via Chat (for testing)"
      },
      "typeVersion": 1
    },
    {
      "id": "id",
      "name": "Bei Empfang einer Chat-Nachricht",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -100,
        980
      ],
      "webhookId": "id",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "4240e62e-0b44-4dbd-9cff-87a404a496bd",
      "name": "AI Agent",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        120,
        980
      ],
      "parameters": {
        "options": {
          "systemMessage": "*Role*\nYou are a highly experienced contracting, commercial and legal adviser who thoroughly understands the contract related to shipping, clearing and forwarding agreements and advise and reply to chat queries looking into the pinecone vector database and respond accordingly. \n\n**Instructions**\nyou will receive chat query to which you have to reply back in chat\nyou will only look for information in the pinecone vector databse\nyou will not create your own reply if you don't get the answer from the database\n\nNote:\nbe polite and professional in your response\ncan use emojis where it is appropriate\n"
        }
      },
      "typeVersion": 2
    },
    {
      "id": "34d9e834-3aba-4c80-8c4d-4206fcdbfac3",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        80,
        1200
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "id",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "784924f6-d197-4666-9a05-e36020021ae2",
      "name": "Simple Memory",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        200,
        1200
      ],
      "parameters": {},
      "typeVersion": 1.3
    },
    {
      "id": "00b70c8d-5940-4eef-84c4-b87d69df3ab9",
      "name": "Answer questions with a vector store",
      "type": "@n8n/n8n-nodes-langchain.toolVectorStore",
      "position": [
        380,
        1200
      ],
      "parameters": {
        "description": "When ever there is a query from chat, use this pinecone vector database to analyse and construct the response. "
      },
      "typeVersion": 1.1
    },
    {
      "id": "dfefbee7-5125-42da-b696-f343dc89573c",
      "name": "Pinecone Vector Store1",
      "type": "@n8n/n8n-nodes-langchain.vectorStorePinecone",
      "position": [
        180,
        1360
      ],
      "parameters": {
        "options": {},
        "pineconeIndex": {
          "__rl": true,
          "mode": "list",
          "value": "package1536",
          "cachedResultName": "package1536"
        }
      },
      "credentials": {
        "pineconeApi": {
          "id": "id",
          "name": "PineconeApi account 2"
        }
      },
      "typeVersion": 1.3
    },
    {
      "id": "8a0e2476-661e-4702-8563-ec0b12033884",
      "name": "Embeddings OpenAI1",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        200,
        1500
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "SCKN5KUziIpM8NB7",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "31a4456c-4a35-4beb-9c4b-de49e460e492",
      "name": "OpenAI Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        520,
        1420
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "SCKN5KUziIpM8NB7",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "7aa47a91-19f9-4a0e-b1b2-5867cf4982ef",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1660,
        -160
      ],
      "parameters": {
        "width": 1200,
        "height": 980,
        "content": "## Query document from a user interface connectied via Webhook\n"
      },
      "typeVersion": 1
    },
    {
      "id": "c9da6a17-a0aa-4d3c-844a-1c3785a956eb",
      "name": "Webhook",
      "type": "n8n-nodes-base.webhook",
      "position": [
        1900,
        0
      ],
      "webhookId": "12b44ee5-c43e-430c-a1d4-4fc5ff5e45c4",
      "parameters": {
        "path": "12b44ee5-c43e-430c-a1d4-4fc5ff5e45c4",
        "options": {},
        "httpMethod": "POST",
        "responseMode": "responseNode"
      },
      "typeVersion": 2
    },
    {
      "id": "b1e8830f-8cfe-40ef-b611-76e70cd9184b",
      "name": "AI Agent1",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        2120,
        0
      ],
      "parameters": {
        "text": "=the query: {{ $json.body.query }}",
        "options": {
          "systemMessage": "*Role*\nYou are a highly experienced contracting, commercial and legal adviser who thoroughly understands the contract related to shipping, clearing and forwarding agreements and advise and reply to chat queries looking into the pinecone vector database and respond accordingly. \n\n**Instructions**\nyou will receive chat query to which you have to reply back in chat\nyou will only look for information in the pinecone vector databse\nyou will not create your own reply if you don't get the answer from the database\n\nNote:\nbe polite and professional in your response\ncan use emojis where it is appropriate\n"
        },
        "promptType": "define"
      },
      "typeVersion": 2
    },
    {
      "id": "87db20d4-7a7c-48a6-a29a-2fd089f93a43",
      "name": "OpenAI Chat Model2",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2020,
        220
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "id",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "2454b5ff-e53e-41c5-9844-f171d63ee2d4",
      "name": "Simple Memory1",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "disabled": true,
      "position": [
        2180,
        220
      ],
      "parameters": {},
      "typeVersion": 1.3
    },
    {
      "id": "e33b7eff-0166-43b2-ab7e-5f53063164a9",
      "name": "Answer questions with a vector store1",
      "type": "@n8n/n8n-nodes-langchain.toolVectorStore",
      "position": [
        2380,
        220
      ],
      "parameters": {
        "description": "When ever there is a query from chat, use this pinecone vector database to analyse and construct the response. "
      },
      "typeVersion": 1.1
    },
    {
      "id": "e223bcf1-7085-433a-a51d-708b0c36a2e4",
      "name": "Pinecone Vector Store2",
      "type": "@n8n/n8n-nodes-langchain.vectorStorePinecone",
      "position": [
        2180,
        380
      ],
      "parameters": {
        "options": {},
        "pineconeIndex": {
          "__rl": true,
          "mode": "list",
          "value": "package1536",
          "cachedResultName": "package1536"
        }
      },
      "credentials": {
        "pineconeApi": {
          "id": "HqCFDvnsq0D6wXpJ",
          "name": "PineconeApi account 2"
        }
      },
      "typeVersion": 1.3
    },
    {
      "id": "9e3f06a1-900b-427e-8775-dad8ddc1de80",
      "name": "Embeddings OpenAI2",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        2200,
        520
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "id",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "df06efec-1f75-4309-923b-044e1c1991f3",
      "name": "OpenAI Chat Model3",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2520,
        440
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "id",
          "name": "OpenAi account 5"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "01b59805-abdd-49ff-a553-0dddf3ed1450",
      "name": "Respond to Webhook",
      "type": "n8n-nodes-base.respondToWebhook",
      "position": [
        2480,
        0
      ],
      "parameters": {
        "options": {
          "responseKey": "={{ $json.output }}"
        }
      },
      "typeVersion": 1.4
    },
    {
      "id": "05fd0853-0ebd-4a99-9345-982c9e664e27",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1000,
        -180
      ],
      "parameters": {
        "color": 4,
        "width": 560,
        "height": 980,
        "content": "This project demonstrates how to build a Retrieval-Augmented Generation (RAG) system using n8n, which:\n🧾 Downloads any pdf file format documents from Google Drive\n📚 Converts them into vector embeddings using OpenAI\n🔍 Stores and searches them in Pinecone Vector DB\n💬 Allows natural language querying of contracts using AI Agents\n\n## Document Loading & RAG Setup\nThis flow automates:\nReading documents from a Google Drive folder\nVectorizing using text-embedding-3-small\nUploading vectors into Pinecone for later semantic search\n\n### 🧱 Workflow Structure\nA [Manual Trigger] --> B[Google Drive Search]\nB --> C[Google Drive Download]\nC --> D[Pinecone Vector Store]\nD --> E[Default Data Loader]\nE --> F[Recursive Character Text Splitter]\nE --> G[OpenAI Embedding]\n\n### 🪜 Steps\nManual Trigger: Kickstarts the workflow on demand for loading new documents.\nGoogle Drive Search & Download\nNode: Google Drive (Search: file/folder), Credentials required to access google drive folders and files\nDownloads PDF documents from the google drive\n\n#### Recursive Text Splitter to Break long documents into overlapping chunks\nSettings:\nChunk Size: 1000\nChunk Overlap: 100\n\n#### OpenAI Embedding\nModel: text-embedding-3-small\nUsed for creating document vectors\n\n#### Pinecone Vector Store\nIndex: package1536\nBatch Size: 200\nSettings:\nType: Dense\nRegion: us-east-1\nMode: Insert Documents\n\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "7f1cc5b2-104e-4571-a838-29c71c79bd08",
      "name": "Sticky Note4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1000,
        940
      ],
      "parameters": {
        "color": 4,
        "width": 560,
        "height": 720,
        "content": "## Quyerying the Documetn via Chat \nThis flow enables chat-style querying of stored documents using OpenAI-powered agents with vector memory.\n\n### 🧱 Workflow Diagram\n  A[Webhook (chat message)] --> B[AI Agent]\n  B --> C[OpenAI Chat Model]\n  B --> D[Simple Memory]\n  B --> E[Answer with Vector Store]\n  E --> F[Pinecone Vector Store]\n  F --> G[Embeddings OpenAI]\n### 🪜 Components\nChat Trigger\nAI Agent Node\n\nHandles query flow using:\nChat Model: OpenAI GPT\nMemory: Simple Memory\nTool: Question Answer with Vector Store\nPinecone Vector Store\nConnected via same embedding index as Flow 1 Embeddings\nEnsures document chunks are retrievable using vector similarity\nResponse Node\nReturns final AI response to user via chat response\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "e11b8fbd-c24b-469f-a196-1e507a6d3e75",
      "name": "Sticky Note5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1080,
        -160
      ],
      "parameters": {
        "color": 4,
        "width": 560,
        "height": 980,
        "content": "## 🌐 Flow 3: UI-Based Query with webhook connecting to Lovable\nThis flow uses a web UI built using Lovable to query contracts directly from a form interface.\n\n### 📥 Webhook Setup for Lovable\nWebhook Node\nMethod: POST\nURL: your webhook url\nResponse: Using 'Respond to Webhook' Node\n\n### 🧱 Workflow Logic\n  A[Webhook (Lovable Form)] --> B[AI Agent]\n  B --> C[OpenAI Chat Model]\n  B --> D[Simple Memory]\n  B --> E[Answer with Vector Store]\n  E --> F[Pinecone Vector Store]\n  F --> G[Embeddings OpenAI]\n  B --> H[Respond to Webhook]\n\n### 💡 Lovable UI\nUsers can submit:\nFull Name\nEmail\nDepartment\nFreeform Query\n\nData is sent via webhook to n8n and responded with the answer from contract content.\n\n### 🔍 Use Cases\nContract Querying for Legal/HR teams\nProcurement & Vendor Agreement QA\nCustomer Support Automation (based on terms)\nRAG Systems for private document knowledge\n\n⚙️ Tools & Tech Stack\nComponent\tTool Used\nAI Embedding\tOpenAI text-embedding-3-small\nVector DB\tPinecone\nChunking\tRecursive Text Splitter\nAI Agent\tOpenAI GPT Chat\nAutomation\tn8n\nUI Integration\tLovable (form-based)\n\n\n\n"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "460c7740-a2d1-41f7-92d5-fc9113152663",
  "connections": {
    "c9da6a17-a0aa-4d3c-844a-1c3785a956eb": {
      "main": [
        [
          {
            "node": "b1e8830f-8cfe-40ef-b611-76e70cd9184b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b1e8830f-8cfe-40ef-b611-76e70cd9184b": {
      "main": [
        [
          {
            "node": "01b59805-abdd-49ff-a553-0dddf3ed1450",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "26b93e8c-0a72-4491-90fe-55b5f5da02a0": {
      "main": [
        [
          {
            "node": "21174f84-5f7b-45bc-944b-0f0a7c2ffd49",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "21174f84-5f7b-45bc-944b-0f0a7c2ffd49": {
      "main": [
        [
          {
            "node": "d84e6051-cc04-4f51-b9c3-0e69e2193571",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "784924f6-d197-4666-9a05-e36020021ae2": {
      "ai_memory": [
        [
          {
            "node": "4240e62e-0b44-4dbd-9cff-87a404a496bd",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "2454b5ff-e53e-41c5-9844-f171d63ee2d4": {
      "ai_memory": [
        [
          {
            "node": "b1e8830f-8cfe-40ef-b611-76e70cd9184b",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "3185a781-28af-4ee0-be7b-2183b80ce0e3": {
      "ai_embedding": [
        [
          {
            "node": "d84e6051-cc04-4f51-b9c3-0e69e2193571",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "34d9e834-3aba-4c80-8c4d-4206fcdbfac3": {
      "ai_languageModel": [
        [
          {
            "node": "4240e62e-0b44-4dbd-9cff-87a404a496bd",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "8a0e2476-661e-4702-8563-ec0b12033884": {
      "ai_embedding": [
        [
          {
            "node": "dfefbee7-5125-42da-b696-f343dc89573c",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "9e3f06a1-900b-427e-8775-dad8ddc1de80": {
      "ai_embedding": [
        [
          {
            "node": "e223bcf1-7085-433a-a51d-708b0c36a2e4",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "31a4456c-4a35-4beb-9c4b-de49e460e492": {
      "ai_languageModel": [
        [
          {
            "node": "00b70c8d-5940-4eef-84c4-b87d69df3ab9",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "87db20d4-7a7c-48a6-a29a-2fd089f93a43": {
      "ai_languageModel": [
        [
          {
            "node": "b1e8830f-8cfe-40ef-b611-76e70cd9184b",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "df06efec-1f75-4309-923b-044e1c1991f3": {
      "ai_languageModel": [
        [
          {
            "node": "e33b7eff-0166-43b2-ab7e-5f53063164a9",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "8eccc3bb-654f-4a92-8074-9d2418afae12": {
      "ai_document": [
        [
          {
            "node": "d84e6051-cc04-4f51-b9c3-0e69e2193571",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "dfefbee7-5125-42da-b696-f343dc89573c": {
      "ai_vectorStore": [
        [
          {
            "node": "00b70c8d-5940-4eef-84c4-b87d69df3ab9",
            "type": "ai_vectorStore",
            "index": 0
          }
        ]
      ]
    },
    "e223bcf1-7085-433a-a51d-708b0c36a2e4": {
      "ai_vectorStore": [
        [
          {
            "node": "e33b7eff-0166-43b2-ab7e-5f53063164a9",
            "type": "ai_vectorStore",
            "index": 0
          }
        ]
      ]
    },
    "id": {
      "main": [
        [
          {
            "node": "4240e62e-0b44-4dbd-9cff-87a404a496bd",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "9a6a4542-81f0-4fa6-b0fa-6fbfcf5fb3d3": {
      "ai_textSplitter": [
        [
          {
            "node": "8eccc3bb-654f-4a92-8074-9d2418afae12",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "00b70c8d-5940-4eef-84c4-b87d69df3ab9": {
      "ai_tool": [
        [
          {
            "node": "4240e62e-0b44-4dbd-9cff-87a404a496bd",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "784badb8-0cf6-434d-9d5d-1670757b548b": {
      "main": [
        [
          {
            "node": "26b93e8c-0a72-4491-90fe-55b5f5da02a0",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e33b7eff-0166-43b2-ab7e-5f53063164a9": {
      "ai_tool": [
        [
          {
            "node": "b1e8830f-8cfe-40ef-b611-76e70cd9184b",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    }
  }
}
Häufig gestellte Fragen

Wie verwende ich diesen Workflow?

Kopieren Sie den obigen JSON-Code, erstellen Sie einen neuen Workflow in Ihrer n8n-Instanz und wählen Sie "Aus JSON importieren". Fügen Sie die Konfiguration ein und passen Sie die Anmeldedaten nach Bedarf an.

Für welche Szenarien ist dieser Workflow geeignet?

Experte - Internes Wiki, KI RAG

Ist es kostenpflichtig?

Dieser Workflow ist völlig kostenlos. Beachten Sie jedoch, dass Drittanbieterdienste (wie OpenAI API), die im Workflow verwendet werden, möglicherweise kostenpflichtig sind.

Workflow-Informationen
Schwierigkeitsgrad
Experte
Anzahl der Nodes30
Kategorie2
Node-Typen14
Schwierigkeitsbeschreibung

Für fortgeschrittene Benutzer, komplexe Workflows mit 16+ Nodes

Autor
Mohan Gopal

Mohan Gopal

@mohan

B2B and B2C Travel App Consultant. Building AI Agent for Travel Solution.

Externe Links
Auf n8n.io ansehen

Diesen Workflow teilen

Kategorien

Kategorien: 34