8
n8n 한국어amn8n.com

GPT-4 및 다중 데이터베이스 검색을 사용한 학술 문헌 검토 자동화

중급

이것은Document Extraction, AI RAG, Multimodal AI분야의자동화 워크플로우로, 13개의 노드를 포함합니다.주로 If, Set, Code, OpenAi, SplitInBatches 등의 노드를 사용하며. GPT-4 및 다중 데이터베이스 검색을 사용한 학술 문헌 리뷰 자동화

사전 요구사항
  • OpenAI API Key
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
  "meta": {
    "instanceId": "placeholder"
  },
  "nodes": [
    {
      "id": "overview-note",
      "name": "리뷰 개요",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        50,
        50
      ],
      "parameters": {
        "color": 5,
        "width": 350,
        "height": 180,
        "content": "## 📖 Literature Review Generator\n\nSystematic review automation:\n• **Searches** multiple databases\n• **Screens** with inclusion criteria\n• **Assesses** study quality\n• **Synthesizes** findings\n• **Generates** PRISMA-compliant review"
      },
      "typeVersion": 1
    },
    {
      "id": "search-note",
      "name": "데이터베이스 검색",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        450,
        450
      ],
      "parameters": {
        "width": 260,
        "height": 160,
        "content": "## 🔍 Search Strategy\n\nDatabases searched:\n• PubMed/MEDLINE\n• Web of Science\n• Cochrane Library\n• Google Scholar\n\n💡 De-duplicates results"
      },
      "typeVersion": 1
    },
    {
      "id": "quality-note",
      "name": "연구 질평가",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        850,
        450
      ],
      "parameters": {
        "width": 260,
        "height": 150,
        "content": "## 📊 Quality Assessment\n\n**Evaluates:**\n• Study design\n• Sample size\n• Risk of bias\n• Evidence level\n\n✅ Cochrane standards"
      },
      "typeVersion": 1
    },
    {
      "id": "output-note",
      "name": "최종 리뷰",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1150,
        450
      ],
      "parameters": {
        "color": 6,
        "width": 260,
        "height": 180,
        "content": "## 📝 Review Output\n\nGenerates:\n• Narrative synthesis\n• Evidence tables\n• PRISMA diagram\n• Forest plots\n• Bibliography\n\n🎯 Publication ready!"
      },
      "typeVersion": 1
    },
    {
      "id": "set-parameters",
      "name": "검색 매개변수 설정",
      "type": "n8n-nodes-base.set",
      "notes": "Configure literature review parameters",
      "position": [
        250,
        300
      ],
      "parameters": {
        "values": {
          "number": [
            {
              "name": "maxPapers",
              "value": 20
            }
          ],
          "string": [
            {
              "name": "topic",
              "value": "machine learning in healthcare"
            },
            {
              "name": "yearFrom",
              "value": "2020"
            },
            {
              "name": "yearTo",
              "value": "2024"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "pdfvector-search",
      "name": "PDF 벡터 - 논문 검색",
      "type": "n8n-nodes-pdfvector.pdfVector",
      "notes": "Search academic databases",
      "position": [
        450,
        300
      ],
      "parameters": {
        "limit": 50,
        "query": "={{ $json.topic }}",
        "yearTo": "={{ $json.yearTo }}",
        "resource": "academic",
        "yearFrom": "={{ $json.yearFrom }}",
        "operation": "search",
        "providers": [
          "pubmed",
          "semantic-scholar",
          "arxiv"
        ],
        "additionalFields": {
          "fields": [
            "title",
            "abstract",
            "authors",
            "year",
            "doi",
            "pdfURL",
            "totalCitations"
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "rank-papers",
      "name": "논문 순위 지정 및 선별",
      "type": "n8n-nodes-base.code",
      "notes": "Rank papers by relevance",
      "position": [
        650,
        300
      ],
      "parameters": {
        "jsCode": "// Rank papers by relevance and citations\nconst papers = $input.all().map(item => item.json);\nconst searchTopic = $node['Set Search Parameters'].json.topic;\n\n// Calculate relevance scores\nconst scoredPapers = papers.map(paper => {\n  let score = 0;\n  \n  // Citation score (normalized)\n  const maxCitations = Math.max(...papers.map(p => p.totalCitations || 0));\n  const citationScore = (paper.totalCitations || 0) / (maxCitations || 1) * 40;\n  score += citationScore;\n  \n  // Recency score\n  const paperYear = parseInt(paper.year);\n  const currentYear = new Date().getFullYear();\n  const recencyScore = Math.max(0, 20 - (currentYear - paperYear) * 2);\n  score += recencyScore;\n  \n  // Title relevance\n  const topicWords = searchTopic.toLowerCase().split(' ');\n  const titleWords = paper.title.toLowerCase();\n  const titleMatches = topicWords.filter(word => titleWords.includes(word)).length;\n  score += titleMatches * 10;\n  \n  // Abstract relevance\n  if (paper.abstract) {\n    const abstractWords = paper.abstract.toLowerCase();\n    const abstractMatches = topicWords.filter(word => abstractWords.includes(word)).length;\n    score += abstractMatches * 5;\n  }\n  \n  return {\n    ...paper,\n    relevanceScore: Math.round(score),\n    rankingDetails: {\n      citationScore: Math.round(citationScore),\n      recencyScore,\n      titleRelevance: titleMatches,\n      abstractRelevance: abstractMatches || 0\n    }\n  };\n});\n\n// Sort by score and limit to top N\nconst maxPapers = $node['Set Search Parameters'].json.maxPapers;\nconst topPapers = scoredPapers\n  .sort((a, b) => b.relevanceScore - a.relevanceScore)\n  .slice(0, maxPapers);\n\nreturn topPapers.map(paper => ({ json: paper }));"
      },
      "typeVersion": 2
    },
    {
      "id": "split-batch",
      "name": "개별 처리",
      "type": "n8n-nodes-base.splitInBatches",
      "notes": "Process papers individually",
      "position": [
        850,
        300
      ],
      "parameters": {
        "options": {},
        "batchSize": 1
      },
      "typeVersion": 1
    },
    {
      "id": "has-pdf",
      "name": "PDF 보유 여부?",
      "type": "n8n-nodes-base.if",
      "position": [
        1050,
        300
      ],
      "parameters": {
        "conditions": {
          "string": [
            {
              "value1": "={{ $json.pdfURL }}",
              "operation": "isNotEmpty"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "pdfvector-parse",
      "name": "PDF 벡터 - 논문 파싱",
      "type": "n8n-nodes-pdfvector.pdfVector",
      "notes": "Parse paper content from PDF or image",
      "position": [
        1250,
        250
      ],
      "parameters": {
        "url": "={{ $json.pdfURL }}",
        "useLLM": "auto",
        "resource": "document",
        "inputType": "url",
        "operation": "parse"
      },
      "typeVersion": 1
    },
    {
      "id": "analyze-paper",
      "name": "논문 내용 분석",
      "type": "n8n-nodes-base.openAi",
      "notes": "Generate review entry",
      "position": [
        1450,
        300
      ],
      "parameters": {
        "model": "gpt-4",
        "messages": {
          "values": [
            {
              "content": "Create a literature review entry for this paper in the context of '{{ $node['Set Search Parameters'].json.topic }}':\n\nTitle: {{ $json.title }}\nAuthors: {{ $json.authors }}\nYear: {{ $json.year }}\nCitations: {{ $json.totalCitations }}\n\nContent: {{ $json.content || $json.abstract }}\n\nProvide:\n1. A 3-4 sentence summary of the paper's contribution\n2. Key methodology used\n3. Main findings (2-3 bullet points)\n4. How it relates to the topic\n5. Limitations mentioned\n6. Suggested citation in APA format"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "store-entry",
      "name": "리뷰 항목 저장",
      "type": "n8n-nodes-base.set",
      "notes": "Save processed entry",
      "position": [
        1650,
        300
      ],
      "parameters": {
        "values": {
          "string": [
            {
              "name": "reviewEntry",
              "value": "={{ $json.choices[0].message.content }}"
            },
            {
              "name": "paperTitle",
              "value": "={{ $node['Has PDF?'].json.title }}"
            },
            {
              "name": "paperDoi",
              "value": "={{ $node['Has PDF?'].json.doi }}"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "compile-review",
      "name": "문헌 리뷰 편집",
      "type": "n8n-nodes-base.code",
      "notes": "Generate final document",
      "position": [
        1850,
        300
      ],
      "parameters": {
        "functionCode": "// Wait for all papers to be processed\nconst allEntries = $input.all().map(item => item.json);\n\n// Group papers by themes/methodologies\nconst themes = {\n  'Machine Learning Models': [],\n  'Clinical Applications': [],\n  'Data Processing': [],\n  'Evaluation Studies': [],\n  'Review Papers': [],\n  'Other': []\n};\n\n// Categorize papers (simplified - in production use NLP)\nallEntries.forEach(entry => {\n  const review = entry.reviewEntry.toLowerCase();\n  if (review.includes('neural network') || review.includes('deep learning')) {\n    themes['Machine Learning Models'].push(entry);\n  } else if (review.includes('clinical') || review.includes('patient')) {\n    themes['Clinical Applications'].push(entry);\n  } else if (review.includes('preprocessing') || review.includes('data processing')) {\n    themes['Data Processing'].push(entry);\n  } else if (review.includes('evaluation') || review.includes('comparison')) {\n    themes['Evaluation Studies'].push(entry);\n  } else if (review.includes('review') || review.includes('survey')) {\n    themes['Review Papers'].push(entry);\n  } else {\n    themes['Other'].push(entry);\n  }\n});\n\n// Generate literature review document\nlet reviewDocument = `# Literature Review: ${$node['Set Search Parameters'].json.topic}\\n\\n`;\nreviewDocument += `Generated on: ${new Date().toLocaleDateString()}\\n\\n`;\nreviewDocument += `## Summary\\n\\n`;\nreviewDocument += `This review analyzes ${allEntries.length} papers published between ${$node['Set Search Parameters'].json.yearFrom} and ${$node['Set Search Parameters'].json.yearTo} on the topic of ${$node['Set Search Parameters'].json.topic}.\\n\\n`;\n\n// Add themed sections\nObject.entries(themes).forEach(([theme, papers]) => {\n  if (papers.length > 0) {\n    reviewDocument += `## ${theme} (${papers.length} papers)\\n\\n`;\n    papers.forEach(paper => {\n      reviewDocument += `### ${paper.paperTitle}\\n\\n`;\n      reviewDocument += paper.reviewEntry + '\\n\\n';\n    });\n  }\n});\n\n// Add bibliography\nreviewDocument += `## Bibliography\\n\\n`;\nallEntries.forEach((entry, index) => {\n  const citation = entry.reviewEntry.split('Suggested citation:')[1] || 'Citation not available';\n  reviewDocument += `${index + 1}. ${citation.trim()}\\n\\n`;\n});\n\nreturn [{\n  json: {\n    reviewDocument,\n    totalPapers: allEntries.length,\n    themes: Object.entries(themes).map(([theme, papers]) => ({\n      theme,\n      count: papers.length\n    })),\n    generatedAt: new Date().toISOString()\n  }\n}];"
      },
      "typeVersion": 2
    }
  ],
  "connections": {
    "has-pdf": {
      "main": [
        [
          {
            "node": "pdfvector-parse",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "analyze-paper",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "split-batch": {
      "main": [
        [
          {
            "node": "has-pdf",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "store-entry": {
      "main": [
        [
          {
            "node": "split-batch",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "rank-papers": {
      "main": [
        [
          {
            "node": "split-batch",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "analyze-paper": {
      "main": [
        [
          {
            "node": "store-entry",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "set-parameters": {
      "main": [
        [
          {
            "node": "pdfvector-search",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "pdfvector-parse": {
      "main": [
        [
          {
            "node": "analyze-paper",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "pdfvector-search": {
      "main": [
        [
          {
            "node": "rank-papers",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
자주 묻는 질문

이 워크플로우를 어떻게 사용하나요?

위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.

이 워크플로우는 어떤 시나리오에 적합한가요?

중급 - 문서 추출, AI RAG, 멀티모달 AI

유료인가요?

이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.

워크플로우 정보
난이도
중급
노드 수13
카테고리3
노드 유형7
난이도 설명

일정 경험을 가진 사용자를 위한 6-15개 노드의 중간 복잡도 워크플로우

저자
PDF Vector

PDF Vector

@pdfvector

A fully featured PDF APIs for developers - Parse any PDF or Word document, extract structured data, and access millions of academic papers - all through simple APIs.

외부 링크
n8n.io에서 보기

이 워크플로우 공유

카테고리

카테고리: 34