동적 AI 네트워크 연구원: 텍스트에서 사용자 정의 CSV로
고급
이것은Miscellaneous, AI Summarization, Multimodal AI분야의자동화 워크플로우로, 16개의 노드를 포함합니다.주로 Set, Code, SplitOut, FormTrigger, HttpRequest 등의 노드를 사용하며. GPT-4와 Linkup을 사용하여 텍스트를 사용자 정의 CSV로 변환하는 동적 AI 네트워크 연구원
사전 요구사항
- •대상 API의 인증 정보가 필요할 수 있음
- •OpenAI API Key
사용된 노드 (16)
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
"nodes": [
{
"id": "7df78b4d-8c66-4353-a87e-7b151913f856",
"name": "폼 제출 시",
"type": "n8n-nodes-base.formTrigger",
"position": [
0,
16
],
"webhookId": "0d4374b6-84a6-4a71-834b-40dd3d3e3adf",
"parameters": {
"options": {},
"formTitle": "New research",
"formFields": {
"values": [
{
"fieldType": "textarea",
"fieldLabel": "Describe your research",
"requiredField": true
}
]
}
},
"typeVersion": 2.3
},
{
"id": "3c8ad682-a662-4266-bdb5-732f6bb8614c",
"name": "OpenAI 채팅 모델",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
304,
240
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-5-chat-latest",
"cachedResultName": "gpt-5-chat-latest"
},
"options": {
"responseFormat": "json_object"
}
},
"credentials": {
"openAiApi": {
"id": "dMiSy27YCK6c6rra",
"name": "Duv's OpenAI"
}
},
"typeVersion": 1.2
},
{
"id": "074eea9f-b07e-4677-8b58-75b92155df44",
"name": "분할",
"type": "n8n-nodes-base.splitOut",
"position": [
1008,
16
],
"parameters": {
"options": {},
"fieldToSplitOut": "List"
},
"typeVersion": 1
},
{
"id": "e9d5daa7-aa07-4873-888f-b704cf0d6d7c",
"name": "항목 반복 처리",
"type": "n8n-nodes-base.splitInBatches",
"position": [
1344,
16
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "baf2d169-9593-4ec2-9415-1ed45cb303d0",
"name": "객체 이름 및 값 가져오기",
"type": "n8n-nodes-base.set",
"position": [
1584,
256
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "3de0459c-a3bf-4db0-94cc-ce007fa5db55",
"name": "={{ $('Prepare prompts and schema').item.json.ObjectName }}",
"type": "string",
"value": "={{ $json.PropertyValue }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "84f376a1-3ab5-4bab-b962-357e4f57854c",
"name": "스티커 노트",
"type": "n8n-nodes-base.stickyNote",
"position": [
640,
-176
],
"parameters": {
"color": 5,
"width": 288,
"height": 384,
"content": "## AI web-search to find all items that match the conditions\n\nDon't forget to connect your Linkup credentials."
},
"typeVersion": 1
},
{
"id": "53b2a08a-f61f-4c60-8c25-9edc8731a9d4",
"name": "Linkup 쿼리로 목록 찾기",
"type": "n8n-nodes-base.httpRequest",
"position": [
736,
16
],
"parameters": {
"url": "https://api.linkup.so/v1/search",
"method": "POST",
"options": {},
"sendBody": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "q",
"value": "={{ $json.discoveryQuery }}"
},
{
"name": "depth",
"value": "deep"
},
{
"name": "outputType",
"value": "structured"
},
{
"name": "structuredOutputSchema",
"value": "={{ JSON.stringify($json.discoverySchema) }}"
},
{
"name": "includeImages",
"value": "false"
}
]
},
"genericAuthType": "httpBearerAuth"
},
"credentials": {
"httpBearerAuth": {
"id": "W7AgeoVOv60DlvyS",
"name": "Linkup - web search AI"
}
},
"typeVersion": 4.2
},
{
"id": "74957f1e-01ba-4cfd-a5e7-2fec11e0a7ad",
"name": "해당 항목의 최종 JSON 준비",
"type": "n8n-nodes-base.code",
"position": [
2128,
448
],
"parameters": {
"jsCode": "// Get the first key-value from the \"Get object name and value\" node\n// Replace 'Get_object_name_and_value' with the actual name of your node\nconst firstNodeData = $node[\"Get object name and value\"].json;\n\n// Get the previous node data (the one with multiple keys)\nconst previousNodeData = items[0].json;\n\n// Create the output object\nconst output = {};\n\n// Add the first key-value pair from the first node\n// Assuming the node only has one key-value pair\nconst firstKey = Object.keys(firstNodeData)[0];\noutput[firstKey] = String(firstNodeData[firstKey]);\n\n// Add all key-value pairs from the previous node, stringified\nfor (const [key, value] of Object.entries(previousNodeData)) {\n if (Array.isArray(value)) {\n output[key] = value.join(', ');\n } else if (typeof value === 'object' && value !== null) {\n output[key] = JSON.stringify(value);\n } else {\n output[key] = String(value);\n }\n}\n\n// Return the new item\nreturn [{ json: output }];\n"
},
"typeVersion": 2
},
{
"id": "d170bc2a-68a3-497c-803b-78f904ec9351",
"name": "Linkup 쿼리로 항목의 모든 속성 찾기",
"type": "n8n-nodes-base.httpRequest",
"position": [
1840,
256
],
"parameters": {
"url": "https://api.linkup.so/v1/search",
"method": "POST",
"options": {},
"sendBody": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "q",
"value": "=For item: {{ $('Loop Over Items').item.json.PropertyValue }}\n{{ $('Prepare prompts and schema').item.json.enrichmentQuery }}"
},
{
"name": "depth",
"value": "standard"
},
{
"name": "outputType",
"value": "structured"
},
{
"name": "structuredOutputSchema",
"value": "={{ JSON.stringify($('Prepare prompts and schema').item.json.enrichmentSchema) }}"
},
{
"name": "includeImages",
"value": "false"
}
]
},
"genericAuthType": "httpBearerAuth"
},
"credentials": {
"httpBearerAuth": {
"id": "W7AgeoVOv60DlvyS",
"name": "Linkup - web search AI"
}
},
"typeVersion": 4.2
},
{
"id": "c4b50e76-3ff0-4d07-830e-7141a6d90d4d",
"name": "프롬프트 및 스키마 준비",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
256,
16
],
"parameters": {
"text": "={{ $json['Describe your research'] }}",
"batching": {},
"messages": {
"messageValues": [
{
"message": "=# Role\n\nYou are an AI research strategy generator for an automated research workflow. Your first task is to identify the primary **object** of the user's research (e.g., Company, Person, City, Product).\n\nYou will always return a valid JSON object with **five** keys, starting with `ObjectName`:\n\n{\n \"ObjectName\": \"string\",\n \"discoveryQuery\": \"string\",\n \"discoverySchema\": { ... },\n \"enrichmentQuery\": \"string\",\n \"enrichmentSchema\": { ... }\n}\n\n\n## Step 0: Identify the ObjectName\n\n**Goal**: First, identify the core subject of the user's request and create a simple label for it.\n\n * Based on the user's prompt, determine the primary object being researched.\n\n * The **ObjectName** must be a simple, **singular noun** (e.g., \"Company\", not \"Companies\").\n\n * This name should be a general category, not overly specific.\n\n * **Examples**:\n\n * If the request is `\"List 50 German fashion companies...\"`, the object is a company. So, **ObjectName** should be `\"Company\"`.\n * If the request is `\"Find 25 CEOs of technology companies...\"`, the object is a person. So, **ObjectName** should be `\"Person\"`.\n * If the request is `\"Provide 25 HEX color codes...\"`, the object is a color. So, **ObjectName** should be `\"Color\"`.\n\n\n## Step 1: Object Discovery\n\n**Goal**: Define **what to search for** and how to structure the list of results into a predictable array.\n\n * **`discoveryQuery`**:\n\n * This is a single sentence prompt that describes EXACTLY what list of items needs to be found.\n * It must be explicit, concise, and human-readable.\n * It must include a mention \"if not enough relevant items have been found, don't force adding the requested number, quality prevails\"\n\n * **`discoverySchema`**:\n\n * A JSON Schema that forces the output into a specific, non-changing structure.\n\n * The structure is **fixed** and must be used exactly as shown below.\n\n * **CRUCIAL**: You must set the `\"description\"` for `\"PropertyValue\"` to tell the AI what content to find. This description should correspond to the unique identifier of the `ObjectName` you identified in Step 0 (e.g., 'The official name of the company').\n\n * **Fixed Structure Example**:\n\n {\n \"type\": \"object\",\n \"properties\": {\n \"List\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"PropertyValue\": {\n \"type\": \"string\",\n \"description\": \"A clear description of what this value should be. E.g., 'The official name of the company'.\"\n }\n },\n \"required\": [\"PropertyValue\"]\n }\n }\n },\n \"required\": [\"List\"]\n }\n\n\n### Step 2: Object Enrichment\n\n**Goal**: For each item discovered in Step 1, define **what extra information to research**. If not specified by the user, aim for 5-8 properties that make the most sense. Mention them in the enrichmentQuery, and give them easily readable names in the enrichmentSchema (e.g., prefer \"Company Name\" over \"companyName\").\n\n * **`enrichmentQuery`**:\n\n * A single sentence prompt for Linkup. Refer to the object generically based on your identified `ObjectName` (e.g., \"For that company...\", \"For that person...\"). The actual name of the item will be provided contextually, so do not use a placeholder.\n\n * **`enrichmentSchema`**:\n\n * A detailed JSON Schema object that defines all the fields to capture for each object, based on the user's goal.\n * The root must be `\"type\": \"object\"`.\n * All properties must be required (see example later)\n\n\n\n## Output Format\n\n * Return a single, valid **JSON object** with five keys: `\"ObjectName\"`, `\"discoveryQuery\"`, `\"discoverySchema\"`, `\"enrichmentQuery\"`, and `\"enrichmentSchema\"`.\n * Do not stringify the schemas; they must remain as JSON objects.\n * Do not include explanations or any text outside the final JSON.\n\n\n### Example JSON Output\n\nHere is a complete example for the request: \"I need 50 german companies in fashion industry between 40 and 130 employees...\"\n\n{\n \"ObjectName\": \"Company\",\n \"discoveryQuery\": \"List 50 German fashion industry companies with 40 to 130 employees. If not enough relevant companies have been found, don't force adding the requested number, quality prevails\",\n \"discoverySchema\": {\n \"type\": \"object\",\n \"properties\": {\n \"List\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \"properties\": {\n \"PropertyValue\": {\n \"type\": \"string\",\n \"description\": \"The official name of the German fashion company.\"\n }\n },\n \"required\": [\"PropertyValue\"]\n }\n }\n },\n \"required\": [\"List\"]\n },\n \"enrichmentQuery\": \"For that company, provide detailed business information useful for personalized outreach including its Website, employee count, headquarters, key contacts, and recent news.\",\n \"enrichmentSchema\": {\n \"type\": \"object\",\n \"properties\": {\n \"Company Name\": {\n \"type\": \"string\",\n \"description\": \"The official company name\"\n },\n \"Website\": {\n \"type\": \"string\",\n \"description\": \"Official website URL\"\n },\n \"Employee Count\": {\n \"type\": \"integer\",\n \"description\": \"Number of employees\"\n },\n \"Headquarters\": {\n \"type\": \"string\",\n \"description\": \"Headquarters location\"\n },\n \"Key Contacts\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\"\n },\n \"description\": \"List of key contact persons (e.g. CEO, Marketing Head)\"\n },\n \"Recent News\": {\n \"type\": \"string\",\n \"description\": \"Any recent news or updates about the company for outreach personalization\"\n }\n },\n \"required\": [\n \"Company Name\",\n \"Website\",\n \"Employee Count\",\n \"Headquarters\",\n \"Key Contacts\",\n \"Recent News\"\n ]\n }\n}"
}
]
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "ef93d5c6-48bc-4afb-80e9-5511c4143d7f",
"name": "CSV로 변환",
"type": "n8n-nodes-base.convertToFile",
"position": [
1664,
-400
],
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "fa8be6ed-db4f-43a6-b5cf-b33ff400f266",
"name": "스티커 노트2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-512,
-416
],
"parameters": {
"width": 448,
"height": 752,
"content": "# **Dynamic AI Web Researcher**\n\nThis workflow turns any plain-text research request into a custom-built, structured spreadsheet (CSV). It uses a \"thinker\" AI to plan the research and a \"doer\" AI to execute it.\n\n## **How it works**\n1. **Plan:** An AI \"thinker\" analyzes your request and dynamically creates a custom plan, deciding on the perfect spreadsheet columns for your goal.\n2. **Discover:** An AI \"researcher\" (Linkup) performs a deep web search to find an initial list of items based on the plan.\n3. **Enrich:** It then loops through each item, performing fast web searches to fill in all the detailed columns defined by the planner.\n4. **Output:** The final, structured data is converted into a CSV file.\n\n## **How to use**\n1. **Connect your AI provider** to the **OpenAI Chat Model** node.\n2. **Connect Linkup:** Add your **Linkup API Key** to the two HTTP Request nodes that query Linkup.\n3. **Run:** Activate the workflow and use the form to submit a research request.\n\n\n\n\n*This template was created by Guillaume Duvernay*"
},
"typeVersion": 1
},
{
"id": "04ecb528-4934-4565-8677-e69917a56f58",
"name": "스티커 노트3",
"type": "n8n-nodes-base.stickyNote",
"position": [
192,
-176
],
"parameters": {
"color": 6,
"width": 352,
"height": 576,
"content": "## The architect brain\n\nThis AI step defines how the output of the research will look like (CSV schema), and how to get there (prompts).\n\nMake sure to connect a powerful AI model"
},
"typeVersion": 1
},
{
"id": "48f2305c-5ef5-41c0-8705-37a8582502e5",
"name": "스티커 노트1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1760,
64
],
"parameters": {
"color": 7,
"width": 288,
"height": 384,
"content": "## AI web-search to find all information about one item\n\nDon't forget to connect your Linkup credentials."
},
"typeVersion": 1
},
{
"id": "29343905-2b7c-4d34-8455-066039945a6a",
"name": "스티커 노트4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1216,
-112
],
"parameters": {
"color": 5,
"width": 1088,
"height": 816,
"content": "## Running a loop on each item\n\nWithin this loop, each item from the list will go through an AI web search that will find all the values for the properties that the initial AI step had identified. These values will be cleaned and prepared before the outcome gets converted into a CSV."
},
"typeVersion": 1
},
{
"id": "2cc1bca9-29ba-4d79-9e3f-6217c39d495a",
"name": "스티커 노트5",
"type": "n8n-nodes-base.stickyNote",
"position": [
1520,
-592
],
"parameters": {
"color": 4,
"width": 384,
"height": 352,
"content": "## The output: A custom CSV\n\nThis CSV contains one row per item that was found, and each column is a property that got enriched thanks to the Web AI search. "
},
"typeVersion": 1
}
],
"connections": {
"074eea9f-b07e-4677-8b58-75b92155df44": {
"main": [
[
{
"node": "e9d5daa7-aa07-4873-888f-b704cf0d6d7c",
"type": "main",
"index": 0
}
]
]
},
"e9d5daa7-aa07-4873-888f-b704cf0d6d7c": {
"main": [
[
{
"node": "ef93d5c6-48bc-4afb-80e9-5511c4143d7f",
"type": "main",
"index": 0
}
],
[
{
"node": "baf2d169-9593-4ec2-9415-1ed45cb303d0",
"type": "main",
"index": 0
}
]
]
},
"3c8ad682-a662-4266-bdb5-732f6bb8614c": {
"ai_languageModel": [
[
{
"node": "c4b50e76-3ff0-4d07-830e-7141a6d90d4d",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"7df78b4d-8c66-4353-a87e-7b151913f856": {
"main": [
[
{
"node": "c4b50e76-3ff0-4d07-830e-7141a6d90d4d",
"type": "main",
"index": 0
}
]
]
},
"baf2d169-9593-4ec2-9415-1ed45cb303d0": {
"main": [
[
{
"node": "d170bc2a-68a3-497c-803b-78f904ec9351",
"type": "main",
"index": 0
}
]
]
},
"c4b50e76-3ff0-4d07-830e-7141a6d90d4d": {
"main": [
[
{
"node": "53b2a08a-f61f-4c60-8c25-9edc8731a9d4",
"type": "main",
"index": 0
}
]
]
},
"53b2a08a-f61f-4c60-8c25-9edc8731a9d4": {
"main": [
[
{
"node": "074eea9f-b07e-4677-8b58-75b92155df44",
"type": "main",
"index": 0
}
]
]
},
"74957f1e-01ba-4cfd-a5e7-2fec11e0a7ad": {
"main": [
[
{
"node": "e9d5daa7-aa07-4873-888f-b704cf0d6d7c",
"type": "main",
"index": 0
}
]
]
},
"d170bc2a-68a3-497c-803b-78f904ec9351": {
"main": [
[
{
"node": "74957f1e-01ba-4cfd-a5e7-2fec11e0a7ad",
"type": "main",
"index": 0
}
]
]
}
}
}자주 묻는 질문
이 워크플로우를 어떻게 사용하나요?
위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.
이 워크플로우는 어떤 시나리오에 적합한가요?
고급 - 기타, AI 요약, 멀티모달 AI
유료인가요?
이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.
관련 워크플로우 추천
AI 계획, Linkup 검색, GPT-5를 사용하여 연구 지원 기사 생성
AI 계획, Linkup 검색 및 GPT-5를 사용하여 연구 지원 기사 생성
Set
Split Out
Aggregate
+
Set
Split Out
Aggregate
19 노드Guillaume Duvernay
콘텐츠 제작
GPT-4와 Airtable을 사용한 작업 기록 및 백업 워크플로 자동화
GPT-4와 Airtable로 워크플로우 자동 기록 및 백업
If
N8n
Set
+
If
N8n
Set
38 노드Guillaume Duvernay
AI 요약
매일 WhatsApp 그룹 지능형 분석: GPT-4.1 분석 및 음성 메시지 변환
매일 WhatsApp 그룹 지능 분석: GPT-4.1 분석 및 음성 메시지 트랜스크립션
If
Set
Code
+
If
Set
Code
52 노드Daniel Lianes
기타
Lookio와 OpenAI GPT를 사용하여 사실에 기반한 기사를 생성합니다.
사용하여 Lookio와 OpenAI GPT로 사실에 기반한 기사를 생성합니다.
Set
Split Out
Aggregate
+
Set
Split Out
Aggregate
19 노드Guillaume Duvernay
콘텐츠 제작
Super RAG과 GPT-5를 사용하여 사실에 기반한 기사를 생성합니다.
사용하여 Super RAG과 GPT-5로 사실에 기반한 기사를 생성합니다.
Set
Split Out
Aggregate
+
Set
Split Out
Aggregate
19 노드Guillaume Duvernay
AI RAG
演示 - 分享模板 - 에서职位描述构建候选人短名单
AI招聘流程:사용Apollo및Airtable에서职位로候选人短名单
Set
Limit
Switch
+
Set
Limit
Switch
40 노드Fabian Herhold
기타