Supabase와 GPT-5를 기반으로 한 고급 다중 쿼리 RAG 시스템 구축
고급
이것은AI RAG, Multimodal AI분야의자동화 워크플로우로, 22개의 노드를 포함합니다.주로 If, Set, Filter, SplitOut, Aggregate 등의 노드를 사용하며. Supabase와 GPT-5를 기반으로 한 고급 다중 쿼리 RAG 시스템 구축
사전 요구사항
- •OpenAI API Key
- •Supabase URL과 API Key
사용된 노드 (22)
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
"nodes": [
{
"id": "14e54443-1722-476a-9f7a-44be7bd2b2bf",
"name": "AI 에이전트",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
208,
-704
],
"parameters": {
"options": {
"systemMessage": "=You are a helpful assistant that answers based on a biology course.\n\nFor that, you always start by calling the tool \"Query knowledge base\" to send an array of 1 to 5 questions that are relevant to ask to the RAG knowledge base that contains all the content of the course and get as an output all chunks that seem to help to craft the final answer. The more the user query is complex, the more you will break it down into sub-queries (up to 5).\n\nFrom there, use the Think tool to critically analyse the initial user query and the content you've retrieved from the knowledge retrieval tool and reason to prepare the best answer possible, challenge the content to be sure that you actually have the right information to be able to respond.\n\nOnly answer based on the course content that you get from using the tool, if you receive any question outside that scope, redirect the conversation, if you don't have the right information to answer, be transparent and say so - don't try to reply anyway with general knowledge.",
"enableStreaming": false
}
},
"typeVersion": 2.2
},
{
"id": "4df46be3-c8b7-4f88-9af2-a644ca1bab2d",
"name": "채팅 메시지 수신 시",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-256,
-704
],
"webhookId": "19fb162f-87ff-454f-96b2-cce0aaa6e22b",
"parameters": {
"public": true,
"options": {
"responseMode": "lastNode"
}
},
"typeVersion": 1.3
},
{
"id": "5f07d924-7727-478a-abf6-eaf11543e19b",
"name": "OpenAI 채팅 모델",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
48,
-480
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-5-mini",
"cachedResultName": "gpt-5-mini"
},
"options": {}
},
"credentials": {
"openAiApi": {
"id": "dMiSy27YCK6c6rra",
"name": "Duv's OpenAI"
}
},
"typeVersion": 1.2
},
{
"id": "dfc7c805-79cc-4326-8edb-f53a88af285d",
"name": "심플 메모리",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
240,
-480
],
"parameters": {
"contextWindowLength": 8
},
"typeVersion": 1.3
},
{
"id": "7ade6fc1-84cc-48b2-bb20-672f0c5b4c27",
"name": "분할",
"type": "n8n-nodes-base.splitOut",
"position": [
-160,
96
],
"parameters": {
"options": {},
"fieldToSplitOut": "queries"
},
"typeVersion": 1
},
{
"id": "f4c92e45-e037-4477-ac50-1d6096fd902e",
"name": "청크 집계",
"type": "n8n-nodes-base.aggregate",
"position": [
1312,
0
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData",
"destinationFieldName": "All chunks for this question"
},
"typeVersion": 1
},
{
"id": "cb5d42fe-9e27-4117-8a1c-9a78da8e770f",
"name": "항목 집계",
"type": "n8n-nodes-base.aggregate",
"position": [
352,
-208
],
"parameters": {
"options": {},
"aggregate": "aggregateAllItemData",
"destinationFieldName": "Knowledge base retrieval"
},
"typeVersion": 1
},
{
"id": "4e7f3e28-c316-4e21-b505-a211c1b23841",
"name": "청크 존재 여부",
"type": "n8n-nodes-base.if",
"position": [
1088,
96
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "66402fe0-918e-4268-8928-f4e83cbb3c4f",
"operator": {
"type": "string",
"operation": "exists",
"singleValue": true
},
"leftValue": "={{ $json['Chunk content'] }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "26d04029-da7f-4292-802a-4c233caef219",
"name": "RAG 출력 정리",
"type": "n8n-nodes-base.set",
"position": [
640,
96
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "1eddb72f-9c99-465b-8f94-0ff0f686b542",
"name": "Chunk content",
"type": "string",
"value": "={{ $json.document.pageContent }}"
},
{
"id": "09fe6c91-2cce-40ff-9f8c-86a6857f0772",
"name": "=Chunk metadata",
"type": "object",
"value": "={\n \"Resource chapter name\": \"{{ $json.document.metadata['Chapter name'] }}\",\n \"Retrieval relevance score\": {{ $json.score.round(2) }}\n}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "545514d9-107e-4af9-b407-7cdfc3770e3f",
"name": "항목 루프 처리1",
"type": "n8n-nodes-base.splitInBatches",
"position": [
64,
96
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "ebdbaea5-405f-4a58-b0b4-198154344329",
"name": "RAG 서브 워크플로우",
"type": "n8n-nodes-base.executeWorkflowTrigger",
"position": [
-384,
96
],
"parameters": {
"workflowInputs": {
"values": [
{
"name": "queries",
"type": "array"
}
]
}
},
"typeVersion": 1.1
},
{
"id": "d2362d6f-a6a0-4651-9f2b-827b8f7eb1c1",
"name": "지식 베이스 쿼리",
"type": "@n8n/n8n-nodes-langchain.toolWorkflow",
"position": [
432,
-480
],
"parameters": {
"workflowId": {
"__rl": true,
"mode": "list",
"value": "c9FlK6mLuWAwqLsP",
"cachedResultName": "TEMPLATE RAG with Supabase and GPT5"
},
"description": "Call this tool to get content about the biology course before crafting your final user answer. Send an array of queries to the knowledge base.",
"workflowInputs": {
"value": {
"queries": "={{ $fromAI('queries', `The array of queries (between 1 and 5) that you've planned to ask to the RAG knowledge base of the course. \nUse an Array format even if there's only one question - this is necessary to not break the workflow format!\n\nExample array output: \n\n[\n {\n \"query\": \"What is Lorem ipsum sir amet?\"\n },\n {\n \"query\": \"How to lorem ipsum dolor sir lorem when lorem ipsum?'?\"\n },\n {\n \"query\": \"Lorem ipsum lorem ipsum dolor sir lorem when lorem ipsum??\"\n }\n]\n`, 'json') }}"
},
"schema": [
{
"id": "queries",
"type": "array",
"display": true,
"removed": false,
"required": false,
"displayName": "queries",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"queries"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
}
},
"typeVersion": 2.2
},
{
"id": "db958756-f1a2-4162-afcf-2b6a0f936200",
"name": "Supabase 벡터 스토어1",
"type": "@n8n/n8n-nodes-langchain.vectorStoreSupabase",
"position": [
288,
96
],
"parameters": {
"mode": "load",
"prompt": "={{ $json.query }}",
"options": {
"queryName": "match_documents"
},
"tableName": {
"__rl": true,
"mode": "list",
"value": "documents",
"cachedResultName": "documents"
}
},
"credentials": {
"supabaseApi": {
"id": "WuxmgfzPKmocqt0M",
"name": "Supabase account 2"
}
},
"typeVersion": 1.3
},
{
"id": "478c2c07-ec28-427e-b33a-85a0f72c576f",
"name": "임베딩 OpenAI1",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
368,
320
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "G6pwE0s12sGlHRe3",
"name": "1 - Plan A's OpenAI"
}
},
"typeVersion": 1.2
},
{
"id": "da138097-8c28-4662-b916-8de388894330",
"name": "스티키 노트1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-480,
-832
],
"parameters": {
"color": 5,
"width": 1472,
"height": 528,
"content": "# AI agent"
},
"typeVersion": 1
},
{
"id": "93a8e212-2a8f-4e9f-8956-b1cca02da212",
"name": "스티키 노트2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-480,
-272
],
"parameters": {
"color": 4,
"width": 2320,
"height": 768,
"content": "# Sub-workflow, tool for agent\n"
},
"typeVersion": 1
},
{
"id": "21ade708-3f0e-4419-9edb-bc57fb543963",
"name": "스티키 노트3",
"type": "n8n-nodes-base.stickyNote",
"position": [
816,
-80
],
"parameters": {
"color": 7,
"width": 688,
"height": 432,
"content": "## Filtering system\nOnly keeping chunks that have a score >0.4"
},
"typeVersion": 1
},
{
"id": "ce4ce8ce-0f12-4dc6-ab24-585a81d71ca5",
"name": "사고",
"type": "@n8n/n8n-nodes-langchain.toolThink",
"position": [
608,
-480
],
"parameters": {
"description": "Use this tool after you got the output of the knowledge retrieval tool to critically analyse the initial user query and the content you've retrieved from the knowledge retrieval tool and reason to prepare the best answer possible, challenge the content to be sure that you actually have the right information to be able to respond.\n\nBe very token efficient when using this tool, write 50 words max which is enough to reason."
},
"typeVersion": 1.1
},
{
"id": "f1d619f3-42fb-4f48-83b3-3c0d1c43d574",
"name": "스티키 노트",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1024,
-832
],
"parameters": {
"width": 512,
"height": 784,
"content": "# Advanced Multi-Query RAG Agent\n\nThis template demonstrates a sophisticated RAG (Retrieval-Augmented Generation) pattern for building high-quality AI agents. It's designed to overcome the limitations of a basic RAG setup.\n\n## How it works\n\nInstead of a simple query, this agent uses a more intelligent, four-step process:\n1. **Decompose:** It breaks complex questions into multiple, simpler sub-queries.\n2. **Retrieve:** It sends these queries to a smart sub-workflow that fetches data from your vector store.\n3. **Filter:** The sub-workflow filters out any retrieved information that doesn't meet a minimum relevance score, ensuring high-quality context.\n4. **Synthesize:** The agent uses a \"Think\" tool to reason over the filtered information before crafting a final, comprehensive answer.\n\n## How to use\n\n1. **Connect your accounts:** You need to connect **Supabase** and **OpenAI** in both this main workflow and in the \"RAG sub-workflow\".\n2. **Customize the agent:** Edit the **AI Agent's system prompt** to match your specific knowledge base (e.g., \"You are a helpful assistant that answers based on our company's internal documents.\").\n3. **Adjust the relevance filter:** In the sub-workflow, you can change the similarity score in the **Filter** node (default is >0.4) to control the quality of the retrieved information."
},
"typeVersion": 1
},
{
"id": "b26b291d-9f95-4012-b830-cd07a9b8015f",
"name": "0.4 초과 점수 유지",
"type": "n8n-nodes-base.filter",
"position": [
864,
96
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "9a3f844e-7d19-4631-9876-140118e61b6b",
"operator": {
"type": "number",
"operation": "gt"
},
"leftValue": "={{ $json['Chunk metadata']['Retrieval relevance score'] }}",
"rightValue": 0.4
}
]
}
},
"typeVersion": 2.2,
"alwaysOutputData": true
},
{
"id": "14d3efaf-dc35-491f-91df-f085829812ee",
"name": "일치 청크 없음 알림",
"type": "n8n-nodes-base.set",
"position": [
1312,
192
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "245fe8f8-b217-4626-bc4d-84f53e47fbbf",
"name": "Retrieval output",
"type": "string",
"value": "=No chunks reached the relevance threshold, the knowledge base was unable to provide information that would be helpful to answer this question."
}
]
}
},
"typeVersion": 3.4
},
{
"id": "e9eb2328-e9e2-4138-9d9e-468359a5e49d",
"name": "루프 출력 준비",
"type": "n8n-nodes-base.set",
"position": [
1568,
192
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "838f21a4-f7bc-414e-83da-99fbaca4fcca",
"name": "Query to the knowledge base",
"type": "string",
"value": "={{ $('Loop Over Items1').first().json.query }}"
},
{
"id": "10a89085-1937-459f-9721-8715cd51ad39",
"name": "Chunks returned",
"type": "string",
"value": "={{ JSON.stringify($json, null, 2) }}"
}
]
}
},
"typeVersion": 3.4
}
],
"connections": {
"ce4ce8ce-0f12-4dc6-ab24-585a81d71ca5": {
"ai_tool": [
[
{
"node": "14e54443-1722-476a-9f7a-44be7bd2b2bf",
"type": "ai_tool",
"index": 0
}
]
]
},
"14e54443-1722-476a-9f7a-44be7bd2b2bf": {
"main": [
[]
]
},
"7ade6fc1-84cc-48b2-bb20-672f0c5b4c27": {
"main": [
[
{
"node": "545514d9-107e-4af9-b407-7cdfc3770e3f",
"type": "main",
"index": 0
}
]
]
},
"4e7f3e28-c316-4e21-b505-a211c1b23841": {
"main": [
[
{
"node": "f4c92e45-e037-4477-ac50-1d6096fd902e",
"type": "main",
"index": 0
}
],
[
{
"node": "14d3efaf-dc35-491f-91df-f085829812ee",
"type": "main",
"index": 0
}
]
]
},
"dfc7c805-79cc-4326-8edb-f53a88af285d": {
"ai_memory": [
[
{
"node": "14e54443-1722-476a-9f7a-44be7bd2b2bf",
"type": "ai_memory",
"index": 0
}
]
]
},
"f4c92e45-e037-4477-ac50-1d6096fd902e": {
"main": [
[
{
"node": "e9eb2328-e9e2-4138-9d9e-468359a5e49d",
"type": "main",
"index": 0
}
]
]
},
"26d04029-da7f-4292-802a-4c233caef219": {
"main": [
[
{
"node": "b26b291d-9f95-4012-b830-cd07a9b8015f",
"type": "main",
"index": 0
}
]
]
},
"545514d9-107e-4af9-b407-7cdfc3770e3f": {
"main": [
[
{
"node": "cb5d42fe-9e27-4117-8a1c-9a78da8e770f",
"type": "main",
"index": 0
}
],
[
{
"node": "db958756-f1a2-4162-afcf-2b6a0f936200",
"type": "main",
"index": 0
}
]
]
},
"ebdbaea5-405f-4a58-b0b4-198154344329": {
"main": [
[
{
"node": "7ade6fc1-84cc-48b2-bb20-672f0c5b4c27",
"type": "main",
"index": 0
}
]
]
},
"5f07d924-7727-478a-abf6-eaf11543e19b": {
"ai_languageModel": [
[
{
"node": "14e54443-1722-476a-9f7a-44be7bd2b2bf",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"478c2c07-ec28-427e-b33a-85a0f72c576f": {
"ai_embedding": [
[
{
"node": "db958756-f1a2-4162-afcf-2b6a0f936200",
"type": "ai_embedding",
"index": 0
}
]
]
},
"14d3efaf-dc35-491f-91df-f085829812ee": {
"main": [
[
{
"node": "e9eb2328-e9e2-4138-9d9e-468359a5e49d",
"type": "main",
"index": 0
}
]
]
},
"b26b291d-9f95-4012-b830-cd07a9b8015f": {
"main": [
[
{
"node": "4e7f3e28-c316-4e21-b505-a211c1b23841",
"type": "main",
"index": 0
}
]
]
},
"e9eb2328-e9e2-4138-9d9e-468359a5e49d": {
"main": [
[
{
"node": "545514d9-107e-4af9-b407-7cdfc3770e3f",
"type": "main",
"index": 0
}
]
]
},
"d2362d6f-a6a0-4651-9f2b-827b8f7eb1c1": {
"ai_tool": [
[
{
"node": "14e54443-1722-476a-9f7a-44be7bd2b2bf",
"type": "ai_tool",
"index": 0
}
]
]
},
"db958756-f1a2-4162-afcf-2b6a0f936200": {
"main": [
[
{
"node": "26d04029-da7f-4292-802a-4c233caef219",
"type": "main",
"index": 0
}
]
]
},
"4df46be3-c8b7-4f88-9af2-a644ca1bab2d": {
"main": [
[
{
"node": "14e54443-1722-476a-9f7a-44be7bd2b2bf",
"type": "main",
"index": 0
}
]
]
}
}
}자주 묻는 질문
이 워크플로우를 어떻게 사용하나요?
위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.
이 워크플로우는 어떤 시나리오에 적합한가요?
고급 - AI RAG, 멀티모달 AI
유료인가요?
이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.
관련 워크플로우 추천
컨텍스트 혼합 RAG AI 콘텐츠
Google Drive에서 Supabase 상황 벡터 데이터베이스로 동기화, RAG 애플리케이션 사용
If
Set
Code
+
If
Set
Code
76 노드Michael Taleb
AI RAG
시각화 참조 라이브러리에서 n8n 노드를 탐색
可视化 참조 라이브러리에서 n8n 노드를 탐색
If
Ftp
Set
+
If
Ftp
Set
113 노드I versus AI
기타
콘텐츠생성기 v3
AI驱动블로그자동화:사용GPT-4생성并게시SEO기사至WordPress및Twitter
If
Set
Code
+
If
Set
Code
144 노드Jay Emp0
콘텐츠 제작
BambooHR AI 기반의 회사 정책과 복리후생 채팅 로봇
BambooHR AI 기반의 회사 정책과 복리후생 챗봇
Set
Filter
Bamboo Hr
+
Set
Filter
Bamboo Hr
50 노드Ludwig
인사
🤖 Gemini RAG 파이프라인을 사용한 문서 전문가 채팅 로봇 구축
OpenAI RAG 파이프라인을 사용하여 n8n 문서 전문가 채팅 로봇 구축
Set
Html
Filter
+
Set
Html
Filter
46 노드Ayham
내부 위키
빌드 커스텀 n8n 워크플로우 MCP 서버
구축할 수 있는 개별 n8n 워크플로우 MCP 서버
If
N8n
Set
+
If
N8n
Set
46 노드Jimleuk
기타