청중 질문 키워드 연구 템플릿
고급
이것은Market Research, Multimodal AI분야의자동화 워크플로우로, 17개의 노드를 포함합니다.주로 If, Set, Code, McpClient, GoogleSheets 등의 노드를 사용하며. OpenAI, Ahrefs 및 Google 시트를 사용한 대상 질문 키워드 연구 워크플로
사전 요구사항
- •Google Sheets API 인증 정보
- •OpenAI API Key
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
"id": "5ReWzWNnEuDyt2hZ",
"meta": {
"instanceId": "3d4f6f82ad714311bb383a0cddf651da8753530e5575f46d078b9a29d27557e0",
"templateCredsSetupCompleted": true
},
"name": "Audience Problem Keyword Research Template",
"tags": [],
"nodes": [
{
"id": "4acb69fe-8ac9-4b24-9f45-a5ad8ab5ca19",
"name": "워크플로우 '실행' 클릭 시",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-48,
0
],
"parameters": {},
"typeVersion": 1
},
{
"id": "d6cf369d-37cf-4e5a-b518-54bb1517d693",
"name": "데이터",
"type": "n8n-nodes-base.set",
"position": [
192,
0
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "6d8b1397-8100-4219-ae03-5477e0da1f0c",
"name": "customer_profile",
"type": "string",
"value": "Mid-30s professional living in a suburban area with a household income of $65,000-80,000. Works in healthcare administration with a stable 9-to-5 schedule and has two school-age children. Values reliability and practicality over flashy features. Vehicle Needs: Seeks a dependable mid-size sedan or small SUV in the $22,000-32,000 range, preferably 1-3 years old. Prioritizes safety ratings, good gas mileage for the daily 20-mile commute, and enough space for car seats and groceries. Brand loyalty leans toward Honda, Toyota, or Mazda based on reputation for longevity. Buying Process: Methodical researcher who spends 6-8 weeks comparing options online before visiting dealerships. Reads consumer reviews, checks reliability ratings, and calculates total cost of ownership. Prefers dealerships with transparent pricing and family-friendly service departments. Typically trades in every 6-7 years when repair costs start climbing or family needs change. This persona represents the backbone of the used car market - practical buyers focused on transportation solutions rather than automotive enthusiasm."
},
{
"id": "1ab9995f-3b6a-407b-8c78-ee2df5079a37",
"name": "ahref_seo_country",
"type": "string",
"value": "us"
},
{
"id": "a7164aa5-6257-4300-a47a-bd79c14de7b1",
"name": "ahref_search_engine",
"type": "string",
"value": "Google"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "491a9c60-95ae-4448-8d46-0ae34c8dcf5d",
"name": "SEO 시드 키워드",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
400,
0
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "o4-mini",
"cachedResultName": "O4-MINI"
},
"options": {},
"messages": {
"values": [
{
"content": "=Output format:\nA list of 50 keywords in a JSON array called \"keywords\". each keyword in the array has an additional element which represents intent. Intent is either informational, navigational, commercial, transactional.\n\nYour Task:\nWhen analyzing the target customer profile, think through what they would actually type into Google, Bing, or other search engines. Consider their pain points, goals, research habits, and decision-making process. Think about both their professional research queries and their more casual, exploratory searches.\n\nkeywords should be short matching typical queries in search engines. It should not be elaborative questions and act as keywords to build upon for further keyword research. Do not return navigational keywords.\n\nTarget customer profile:\n {{ $json.customer_profile }}"
},
{
"role": "system",
"content": "You are a marketing strategist and SEO specialist who works for a fintech marketing agency. You have an MBA in Marketing and many years of experience in keyword research and search behavior analysis, specifically focused on the financial services and investment tools sector.\n\nYour Background:\n- You're analytically-minded and data-obsessed, always looking for patterns in search behavior\n- You have a deep understanding of investor psychology and how financial stress/opportunity drives search queries\n- You've worked with multiple investment platforms, robo-advisors, and financial education companies\n- You're familiar with tools like SEMrush, Ahrefs, Google Keyword Planner, and Answer The Public\n- You understand the seasonal patterns of investment-related searches (earnings seasons, market volatility, tax season)\n\nYour Approach:\n- You think in terms of search intent: informational, navigational, commercial, and transactional queries\n- You consider the customer journey from awareness to consideration to decision\n- You're always thinking about long-tail keywords and semantic search patterns\n- You understand that financial searchers often use specific jargon and technical terms\n- You know that investment-related searches spike during market events and news cycles\n\nYour Personality:\n- Methodical and thorough - you don't just think of obvious keywords\n- Empathetic to user pain points and motivations behind searches\n- Strategic thinker who connects keywords to business outcomes\n- Detail-oriented but also sees the big picture of search landscapes\n- Slightly nerdy about search trends and user behavior data"
}
]
},
"jsonOutput": true
},
"credentials": {
"openAiApi": {
"id": "j4314KXs7eD2lghV",
"name": "OpenAi account"
}
},
"typeVersion": 1.8
},
{
"id": "3eeff8fd-9c13-45ea-8d49-eff7557352fc",
"name": "AEO 질문",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
400,
288
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "o4-mini",
"cachedResultName": "O4-MINI"
},
"options": {},
"messages": {
"values": [
{
"content": "=Output format:\nA list of 50 questions in a JSON array called \"questions\". each question in the array has an additional element which represents intent. Intent is either informational, navigational, commercial, transactional.\n\nYour Task:\nWhen analyzing the target customer profile, think through what questions they would actually ask ChatGPT, Claude, or Google AI Mode. Consider how they would phrase requests for investment advice, research help, analysis, and decision support. Think about their natural conversation patterns, the context they'd provide, and how they'd iterate on responses. Draw from your deep understanding of search behavior patterns from SEMrush and Ahrefs data to predict conversational AI query evolution.\n\nGenerate question examples - focusing on natural conversational queries, multi-turn interactions, and the specific ways this audience leverages AI for investment research and decision-making, backed by your professional marketing intelligence expertise.\n\nTarget customer profile:\n {{ $json.customer_profile }}"
},
{
"role": "system",
"content": "You are an Answer Engine Optimization (AEO) specialist and conversational AI researcher who works for a cutting-edge digital marketing consultancy. You have an MBA in Digital Marketing and many years of experience analyzing search behavior across traditional SEO and emerging conversational AI platforms.\n\nYour Background:\n- You're a certified expert in SEMrush, Ahrefs, and other premium marketing intelligence tools \n- You've managed keyword research campaigns with budgets exceeding $500K annually across fintech and investment sectors\n- You understand the nuances of search intent classification (informational, navigational, commercial, transactional) and how this translates to conversational AI queries \n- You've studied thousands of ChatGPT, Claude, and Google AI Mode conversations across various industries, with particular focus on financial services\n- You're an expert in competitive intelligence, using tools like SEMrush's 3+ billion keyword database and Ahrefs' backlink analysis to understand market landscapes \n- You stay current with LLM capabilities and how users adapt their questioning styles accordingly\n\nYour Tool Expertise:\n- Advanced SEMrush user: Keyword Magic Tool, Topic Research, Market Explorer, and Brand Monitoring\n- Ahrefs power user: Keywords Explorer, Content Explorer, and Site Explorer for competitive analysis \n- Proficient with Answer The Public, SpyFu, and emerging AEO-specific tools\n- Experience with Google Search Console, Google Analytics, and Google Ads Keyword Planner integration\n- Understanding of how traditional keyword metrics (search volume, difficulty, CPC) translate to conversational AI query patterns\n\nYour Approach:\n- You think in terms of natural language queries and conversational flows, but with deep understanding of underlying search intent\n- You understand that AI users ask follow-up questions and iterate on their queries, creating conversation threads rather than isolated searches\n- You recognize that people are more verbose and context-heavy when talking to AI vs. search engines, often providing personal financial situations\n- You know users often ask for comparisons, explanations, and step-by-step guidance from LLMs, especially for complex investment decisions\n\nYour Personality:\n- Curious about human-AI interaction patterns and emerging query behaviors in financial services\n- Forward-thinking about how conversational AI is changing information discovery and purchase decisions\n- Analytical but focused on natural language patterns rather than traditional keyword density metrics\n- Empathetic to how users build trust and rapport with AI assistants for financial advice\n- Excited about the shift from \"search\" to \"ask\" mentality, especially in high-stakes financial decisions\n- Data-driven decision maker who validates hypotheses with actual tool data and user behavior analytics"
}
]
},
"jsonOutput": true
},
"credentials": {
"openAiApi": {
"id": "j4314KXs7eD2lghV",
"name": "OpenAi account"
}
},
"typeVersion": 1.8
},
{
"id": "cc157702-6c5d-44de-a685-a0f15b547b4f",
"name": "키워드 추가",
"type": "n8n-nodes-base.googleSheets",
"position": [
1408,
0
],
"parameters": {
"columns": {
"value": {
"Intent": "={{ $json.intent }}",
"Keyword": "={{ $json.keyword }}"
},
"schema": [
{
"id": "Keyword",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Difficulty",
"type": "string",
"display": true,
"required": false,
"displayName": "Difficulty",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Volumne",
"type": "string",
"display": true,
"required": false,
"displayName": "Volumne",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Intent",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Intent",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Keyword"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": "gid=0",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1l5bhQzcG4BNL8mOucjYxCnWgRSJFcxVYj7W0vhCBY9s/edit#gid=0",
"cachedResultName": "Keywords"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=drivesdk",
"cachedResultName": "Example: SEO/AEO Research Workflow"
},
"authentication": "serviceAccount"
},
"credentials": {
"googleApi": {
"id": "CEWCuoGMaP93jgCn",
"name": "GCP Service account"
}
},
"typeVersion": 4.6
},
{
"id": "2aed19ed-e868-4d3e-b507-6b364e4fe258",
"name": "키워드들 추가",
"type": "n8n-nodes-base.googleSheets",
"position": [
2688,
208
],
"parameters": {
"columns": {
"value": {
"Keyword": "={{ $json.value.keyword }}",
"Volumne": "={{ $json.value.volume }}",
"Difficulty": "={{ $json.value.difficulty }}"
},
"schema": [
{
"id": "Keyword",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Difficulty",
"type": "string",
"display": true,
"required": false,
"displayName": "Difficulty",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Volumne",
"type": "string",
"display": true,
"required": false,
"displayName": "Volumne",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Keyword"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": "gid=0",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1l5bhQzcG4BNL8mOucjYxCnWgRSJFcxVYj7W0vhCBY9s/edit#gid=0",
"cachedResultName": "Keywords"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=drivesdk",
"cachedResultName": "Example: SEO/AEO Research Workflow"
},
"authentication": "serviceAccount"
},
"credentials": {
"googleApi": {
"id": "CEWCuoGMaP93jgCn",
"name": "GCP Service account"
}
},
"typeVersion": 4.6
},
{
"id": "ff8aae43-e5d5-4569-a3e0-8c79cb168919",
"name": "MCP 키워드 JSON 파싱",
"type": "n8n-nodes-base.code",
"onError": "continueErrorOutput",
"position": [
1920,
0
],
"parameters": {
"jsCode": "// Input: Stringified JSON with escaped characters like \\n, \\\", etc.\nconst inputString = $input.first().json.result.content[0].text\n\n// Parse the string into a real object\nconst parsedJson = JSON.parse(inputString);\n\n// Since parsedJson is an array, we need to map each item to have a json property\nreturn parsedJson.map(item => ({\n json: item\n}));"
},
"typeVersion": 2
},
{
"id": "9446c8c2-834b-46b0-af10-527f8dd6929a",
"name": "AI 키워드 순환 처리",
"type": "n8n-nodes-base.splitInBatches",
"position": [
1120,
0
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "62114aa9-c062-451d-b757-7b3af04b11dd",
"name": "관련 키워드 생성기",
"type": "n8n-nodes-mcp.mcpClient",
"position": [
1664,
0
],
"parameters": {
"toolName": "keyword_generator",
"operation": "executeTool",
"toolParameters": "={\n \"keyword\": \"{{ $json.Keyword }}\",\n \"country\": \"{{ $('Data').item.json.ahref_seo_country }}\",\n \"search_engine\": \"{{ $('Data').item.json.ahref_search_engine }}\"\n}"
},
"credentials": {
"mcpClientApi": {
"id": "IHt3R0V5d8rgP6MK",
"name": "SEO-MCP Client (STDIO)"
}
},
"typeVersion": 1
},
{
"id": "6dfbea3b-6f8c-4889-b455-9ff106870d6f",
"name": "SEO 반환 값 순환 처리",
"type": "n8n-nodes-base.splitInBatches",
"position": [
2192,
0
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "7ef6f3a6-4659-4538-a223-3d600f3e2555",
"name": "조건문",
"type": "n8n-nodes-base.if",
"position": [
2400,
16
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "92f74515-5438-47a9-bd78-5138339d92d8",
"operator": {
"type": "string",
"operation": "notEmpty",
"singleValue": true
},
"leftValue": "={{ $json.label }}",
"rightValue": ""
},
{
"id": "e56e30d7-dfb8-464c-8ebf-7388f17a05cf",
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $json.label }}",
"rightValue": "\"question ideas\""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "e7ef3174-8d5f-4dfb-bedf-cb07412da781",
"name": "키워드 JSON 파싱",
"type": "n8n-nodes-base.code",
"position": [
832,
0
],
"parameters": {
"jsCode": "return $input.first().json.message.content.keywords"
},
"typeVersion": 2
},
{
"id": "f2a802f8-00d7-46c5-b273-04a1147ae6f7",
"name": "질문 JSON 파싱",
"type": "n8n-nodes-base.code",
"position": [
832,
288
],
"parameters": {
"jsCode": "return $input.first().json.message.content.questions"
},
"typeVersion": 2
},
{
"id": "2f16fbaf-1bb2-40de-ab86-9a7b7644668a",
"name": "AI 질문 순환 처리",
"type": "n8n-nodes-base.splitInBatches",
"position": [
1120,
288
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "3c3b6190-6ba7-4adf-bd3b-989242ba9d16",
"name": "AI 질문 추가",
"type": "n8n-nodes-base.googleSheets",
"position": [
1408,
288
],
"parameters": {
"columns": {
"value": {
"Intent": "={{ $json.intent }}",
"Question": "={{ $json.question }}"
},
"schema": [
{
"id": "Question",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Question",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Intent",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Intent",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Question"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": 1575118832,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1l5bhQzcG4BNL8mOucjYxCnWgRSJFcxVYj7W0vhCBY9s/edit#gid=1575118832",
"cachedResultName": "Questions"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=drivesdk",
"cachedResultName": "Example: SEO/AEO Research Workflow"
},
"authentication": "serviceAccount"
},
"credentials": {
"googleApi": {
"id": "CEWCuoGMaP93jgCn",
"name": "GCP Service account"
}
},
"typeVersion": 4.6
},
{
"id": "1da1245c-1a6d-4920-9535-f03a8b5fa309",
"name": "SEO 연구 질문 추가",
"type": "n8n-nodes-base.googleSheets",
"position": [
2688,
0
],
"parameters": {
"columns": {
"value": {
"Keyword": "={{ $json.value.keyword }}",
"Volumne": "={{ $json.value.volume }}",
"Difficulty": "={{ $json.value.difficulty }}"
},
"schema": [
{
"id": "Keyword",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Keyword",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Difficulty",
"type": "string",
"display": true,
"required": false,
"displayName": "Difficulty",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Volumne",
"type": "string",
"display": true,
"required": false,
"displayName": "Volumne",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"Keyword"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": 1575118832,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1l5bhQzcG4BNL8mOucjYxCnWgRSJFcxVYj7W0vhCBY9s/edit#gid=1575118832",
"cachedResultName": "Questions"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=drivesdk",
"cachedResultName": "Example: SEO/AEO Research Workflow"
},
"authentication": "serviceAccount"
},
"credentials": {
"googleApi": {
"id": "CEWCuoGMaP93jgCn",
"name": "GCP Service account"
}
},
"typeVersion": 4.6
},
{
"id": "3d938281-0ed9-4e31-a93c-92ae9349a1dd",
"name": "스티키 노트7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-640,
-224
],
"parameters": {
"width": 460,
"height": 816,
"content": "## Audience Problem Keyword Research Workflow\n### This n8n template generates relevant keywords and questions from a a customer profile. Keyword data is enriched from ahref and everything is stored in a Google Sheet. This is great for market and customer research. Understanding search intent for a well defined audience and gives relevant actionable data in a fraction of time that manual research takes.\n\n### How it works\n* We'll define a customer profile in the 'Data' node\n* We use an OpenAI LLM to fetch relevant search intent as keywords and questions\n* We use an SEO MCP server to fetch keyword data from ahref free tooling\n* The fetched data is stored in the Google sheet\n\n### How to use\n* Make a copy of [this](https://docs.google.com/spreadsheets/d/10SEHuy5bYMrq_j1Tr2HBcM9I4O6ShYVV_k2tKEfxteI/edit?usp=sharing) Google Sheet and add it in all Google Sheet nodes\n* Make sure that n8n has read & write permissions for your Google sheet. For my self-hosted n8n instance I was using a [Google Service Account](https://docs.n8n.io/integrations/builtin/credentials/google/service-account/)\n* Add your OpenAI account ([API Key](https://docs.n8n.io/integrations/builtin/credentials/openai/#using-api-key)) in the LLM nodes\n* Add your customer profile in the 'Data' node\n* Add MCP credentials for [seo-mcp](https://github.com/cnych/seo-mcp). Make sure you set the environments correctly:\n```json\n\"command\": \"uvx\",\n\"args\": [\"--python\", \"3.10\", \"seo-mcp\"],\n\"env\": {\n \"CAPSOLVER_API_KEY\": \"CAP-xxxxxx\"\n}\n```\n* Execute workflow :)\n\n### Requirements\n* CapSolver account and API key ([register here](https://dashboard.capsolver.com/passport/register?inviteCode=p-4Y_DjQymvt)) to use [seo-mcp](https://github.com/cnych/seo-mcp)\n* Google Drive account"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "b06b735c-be0f-4a40-b25d-538522244754",
"connections": {
"7ef6f3a6-4659-4538-a223-3d600f3e2555": {
"main": [
[
{
"node": "1da1245c-1a6d-4920-9535-f03a8b5fa309",
"type": "main",
"index": 0
}
],
[
{
"node": "2aed19ed-e868-4d3e-b507-6b364e4fe258",
"type": "main",
"index": 0
}
]
]
},
"d6cf369d-37cf-4e5a-b518-54bb1517d693": {
"main": [
[
{
"node": "3eeff8fd-9c13-45ea-8d49-eff7557352fc",
"type": "main",
"index": 0
},
{
"node": "491a9c60-95ae-4448-8d46-0ae34c8dcf5d",
"type": "main",
"index": 0
}
]
]
},
"cc157702-6c5d-44de-a685-a0f15b547b4f": {
"main": [
[
{
"node": "62114aa9-c062-451d-b757-7b3af04b11dd",
"type": "main",
"index": 0
}
]
]
},
"2aed19ed-e868-4d3e-b507-6b364e4fe258": {
"main": [
[
{
"node": "6dfbea3b-6f8c-4889-b455-9ff106870d6f",
"type": "main",
"index": 0
}
]
]
},
"3eeff8fd-9c13-45ea-8d49-eff7557352fc": {
"main": [
[
{
"node": "f2a802f8-00d7-46c5-b273-04a1147ae6f7",
"type": "main",
"index": 0
}
]
]
},
"3c3b6190-6ba7-4adf-bd3b-989242ba9d16": {
"main": [
[
{
"node": "2f16fbaf-1bb2-40de-ab86-9a7b7644668a",
"type": "main",
"index": 0
}
]
]
},
"491a9c60-95ae-4448-8d46-0ae34c8dcf5d": {
"main": [
[
{
"node": "e7ef3174-8d5f-4dfb-bedf-cb07412da781",
"type": "main",
"index": 0
}
]
]
},
"e7ef3174-8d5f-4dfb-bedf-cb07412da781": {
"main": [
[
{
"node": "9446c8c2-834b-46b0-af10-527f8dd6929a",
"type": "main",
"index": 0
}
]
]
},
"f2a802f8-00d7-46c5-b273-04a1147ae6f7": {
"main": [
[
{
"node": "2f16fbaf-1bb2-40de-ab86-9a7b7644668a",
"type": "main",
"index": 0
}
]
]
},
"9446c8c2-834b-46b0-af10-527f8dd6929a": {
"main": [
[],
[
{
"node": "cc157702-6c5d-44de-a685-a0f15b547b4f",
"type": "main",
"index": 0
}
]
]
},
"2f16fbaf-1bb2-40de-ab86-9a7b7644668a": {
"main": [
[],
[
{
"node": "3c3b6190-6ba7-4adf-bd3b-989242ba9d16",
"type": "main",
"index": 0
}
]
]
},
"ff8aae43-e5d5-4569-a3e0-8c79cb168919": {
"main": [
[
{
"node": "6dfbea3b-6f8c-4889-b455-9ff106870d6f",
"type": "main",
"index": 0
}
],
[
{
"node": "9446c8c2-834b-46b0-af10-527f8dd6929a",
"type": "main",
"index": 0
}
]
]
},
"1da1245c-1a6d-4920-9535-f03a8b5fa309": {
"main": [
[
{
"node": "6dfbea3b-6f8c-4889-b455-9ff106870d6f",
"type": "main",
"index": 0
}
]
]
},
"62114aa9-c062-451d-b757-7b3af04b11dd": {
"main": [
[
{
"node": "ff8aae43-e5d5-4569-a3e0-8c79cb168919",
"type": "main",
"index": 0
}
]
]
},
"6dfbea3b-6f8c-4889-b455-9ff106870d6f": {
"main": [
[
{
"node": "9446c8c2-834b-46b0-af10-527f8dd6929a",
"type": "main",
"index": 0
}
],
[
{
"node": "7ef6f3a6-4659-4538-a223-3d600f3e2555",
"type": "main",
"index": 0
}
]
]
},
"4acb69fe-8ac9-4b24-9f45-a5ad8ab5ca19": {
"main": [
[
{
"node": "d6cf369d-37cf-4e5a-b518-54bb1517d693",
"type": "main",
"index": 0
}
]
]
}
}
}자주 묻는 질문
이 워크플로우를 어떻게 사용하나요?
위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.
이 워크플로우는 어떤 시나리오에 적합한가요?
고급 - 시장 조사, 멀티모달 AI
유료인가요?
이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.
관련 워크플로우 추천
도메인 분석기 워크플로 템플릿
Ahrefs 및 Google 스프레드시트를 사용한 다중 도메인 SEO 분석 자동화
Code
Mcp Client
Google Sheets
+
Code
Mcp Client
Google Sheets
12 노드Michael Muenzer
시장 조사
GPT-5 nano와 Google Sheets를 사용하여 웹을 추출하고 질문에 답하다
GPT-5 nano와 Google Sheets를 사용하여 웹사이트를 추출하고 질문에 답하다
If
Set
Xml
+
If
Set
Xml
44 노드Oriol Seguí
시장 조사
Google Maps 리뷰를 Google 스프레드시트로 동기화
SerpApi를 사용한 Google Maps 리뷰를 Google 스프레드시트로 동기화
If
Set
Code
+
If
Set
Code
22 노드SerpApi
시장 조사
Printify 자동화 - 제목 및 설명 업데이트 - AlexK1919
GPT-4o-mini를 사용하여 Printify용 SEO 제품 제목 및 설명 자동 생성
If
Set
Code
+
If
Set
Code
26 노드Amit Mehta
콘텐츠 제작
템플릿 v08/02 - Facebook 광고 라이브러리에서 Amazon 크롤러로
Apify 크롤러를 사용하여 Amazon에서 Facebook 광고 상품 자동 검색
If
Set
Code
+
If
Set
Code
24 노드Richard Besier
시장 조사
YouTube 비디오 기반 자율 블로그 게시
ChatGPT, Sheets, Apify, Pexels, WordPress를 사용하여 YouTube 비디오를 자동으로 블로그에 게시합니다.
If
Set
Code
+
If
Set
Code
80 노드Oriol Seguí
콘텐츠 제작