8
n8n 한국어amn8n.com

탄소 배출 추적기

고급

이것은Document Extraction, AI Summarization분야의자동화 워크플로우로, 16개의 노드를 포함합니다.주로 Code, GoogleDrive, ScheduleTrigger, ScrapegraphAi 등의 노드를 사용하며. ScrapeGraphAI를 사용하여 Google 클라우드 스토리지에서 ESG 보고서의 탄소 발자국 추적기를 분석합니다.

사전 요구사항
  • Google Drive API 인증 정보
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
  "id": "CarbonFootprintTracker2025",
  "meta": {
    "instanceId": "carbon-tracker-sustainability-workflow-n8n",
    "templateCredsSetupCompleted": false
  },
  "name": "Carbon Footprint Tracker",
  "tags": [
    "sustainability",
    "esg",
    "carbon-footprint",
    "environmental",
    "reporting"
  ],
  "nodes": [
    {
      "id": "a1b2c3d4-e5f6-7890-abcd-ef1234567890",
      "name": "스케줄 트리거",
      "type": "n8n-nodes-base.scheduleTrigger",
      "position": [
        300,
        800
      ],
      "parameters": {
        "rule": {
          "interval": [
            {
              "field": "cronExpression",
              "expression": "0 8 * * *"
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "b2c3d4e5-f6g7-8901-bcde-f23456789012",
      "name": "에너지 데이터 스크래퍼",
      "type": "n8n-nodes-scrapegraphai.scrapegraphAi",
      "position": [
        600,
        700
      ],
      "parameters": {
        "userPrompt": "Extract energy consumption data and carbon emission factors. Use this schema: { \"energy_type\": \"electricity\", \"consumption_value\": \"1000\", \"unit\": \"kWh\", \"carbon_factor\": \"0.92\", \"emission_unit\": \"lbs CO2/kWh\", \"source\": \"EPA\", \"last_updated\": \"2024-01-15\" }",
        "websiteUrl": "https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator"
      },
      "credentials": {
        "scrapegraphAIApi": {
          "id": "",
          "name": ""
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c3d4e5f6-g7h8-9012-cdef-345678901234",
      "name": "교통 데이터 스크래퍼",
      "type": "n8n-nodes-scrapegraphai.scrapegraphAi",
      "position": [
        600,
        900
      ],
      "parameters": {
        "userPrompt": "Extract transportation emission factors and fuel efficiency data. Use this schema: { \"vehicle_type\": \"passenger_car\", \"fuel_type\": \"gasoline\", \"mpg\": \"25.4\", \"co2_per_gallon\": \"19.6\", \"co2_per_mile\": \"0.77\", \"unit\": \"lbs CO2\", \"source\": \"EPA\", \"category\": \"transport\" }",
        "websiteUrl": "https://www.fueleconomy.gov/feg/co2.jsp"
      },
      "credentials": {
        "scrapegraphAIApi": {
          "id": "",
          "name": ""
        }
      },
      "typeVersion": 1
    },
    {
      "id": "d4e5f6g7-h8i9-0123-defg-456789012345",
      "name": "발자국 계산기",
      "type": "n8n-nodes-base.code",
      "position": [
        1000,
        800
      ],
      "parameters": {
        "jsCode": "// Carbon Footprint Calculator\nconst energyData = $input.item(0).json;\nconst transportData = $input.item(1).json;\n\n// Sample organizational data (in real scenario, this would come from your systems)\nconst organizationData = {\n  electricity_consumption: 50000, // kWh/month\n  natural_gas: 2000, // therms/month\n  fleet_miles: 15000, // miles/month\n  employee_commute: 25000, // miles/month\n  air_travel: 50000, // miles/month\n  employees: 100\n};\n\nfunction calculateCarbonFootprint(energyFactors, transportFactors, orgData) {\n  const calculations = {\n    scope1: {\n      natural_gas: orgData.natural_gas * 11.7, // lbs CO2 per therm\n      fleet_fuel: (orgData.fleet_miles / 25.4) * 19.6 // assuming 25.4 mpg\n    },\n    scope2: {\n      electricity: orgData.electricity_consumption * 0.92 // lbs CO2 per kWh\n    },\n    scope3: {\n      employee_commute: orgData.employee_commute * 0.77, // lbs CO2 per mile\n      air_travel: orgData.air_travel * 0.53, // lbs CO2 per mile\n      supply_chain: orgData.electricity_consumption * 0.1 // estimated\n    }\n  };\n\n  const totalScope1 = Object.values(calculations.scope1).reduce((a, b) => a + b, 0);\n  const totalScope2 = Object.values(calculations.scope2).reduce((a, b) => a + b, 0);\n  const totalScope3 = Object.values(calculations.scope3).reduce((a, b) => a + b, 0);\n  \n  const totalEmissions = totalScope1 + totalScope2 + totalScope3;\n  const emissionsPerEmployee = totalEmissions / orgData.employees;\n  \n  return {\n    timestamp: new Date().toISOString(),\n    total_emissions_lbs: Math.round(totalEmissions),\n    total_emissions_tons: Math.round(totalEmissions / 2000 * 100) / 100,\n    emissions_per_employee: Math.round(emissionsPerEmployee * 100) / 100,\n    scope1_total: Math.round(totalScope1),\n    scope2_total: Math.round(totalScope2),\n    scope3_total: Math.round(totalScope3),\n    breakdown: calculations,\n    baseline_data: orgData\n  };\n}\n\nconst footprintResults = calculateCarbonFootprint(\n  energyData.result || energyData,\n  transportData.result || transportData,\n  organizationData\n);\n\nreturn [{ json: footprintResults }];"
      },
      "typeVersion": 2
    },
    {
      "id": "e5f6g7h8-i9j0-1234-efgh-567890123456",
      "name": "감축 기회 탐색기",
      "type": "n8n-nodes-base.code",
      "position": [
        1400,
        800
      ],
      "parameters": {
        "jsCode": "// Reduction Opportunity Finder\nconst footprintData = $input.first().json;\n\nfunction findReductionOpportunities(data) {\n  const opportunities = [];\n  const currentEmissions = data.total_emissions_tons;\n  \n  // Energy efficiency opportunities\n  if (data.scope2_total > data.scope1_total * 0.5) {\n    opportunities.push({\n      category: 'Energy Efficiency',\n      opportunity: 'LED lighting upgrade',\n      potential_reduction_tons: Math.round(currentEmissions * 0.08 * 100) / 100,\n      investment_required: '$25,000',\n      payback_period: '2.5 years',\n      priority: 'High',\n      implementation_effort: 'Medium'\n    });\n    \n    opportunities.push({\n      category: 'Renewable Energy',\n      opportunity: 'Solar panel installation',\n      potential_reduction_tons: Math.round(currentEmissions * 0.25 * 100) / 100,\n      investment_required: '$150,000',\n      payback_period: '7 years',\n      priority: 'High',\n      implementation_effort: 'High'\n    });\n  }\n  \n  // Transportation opportunities\n  if (data.breakdown.scope3.employee_commute > 5000) {\n    opportunities.push({\n      category: 'Transportation',\n      opportunity: 'Remote work policy (3 days/week)',\n      potential_reduction_tons: Math.round(currentEmissions * 0.12 * 100) / 100,\n      investment_required: '$10,000',\n      payback_period: '6 months',\n      priority: 'High',\n      implementation_effort: 'Low'\n    });\n    \n    opportunities.push({\n      category: 'Transportation',\n      opportunity: 'Electric vehicle fleet transition',\n      potential_reduction_tons: Math.round(currentEmissions * 0.15 * 100) / 100,\n      investment_required: '$200,000',\n      payback_period: '5 years',\n      priority: 'Medium',\n      implementation_effort: 'High'\n    });\n  }\n  \n  // Office efficiency\n  opportunities.push({\n    category: 'Office Operations',\n    opportunity: 'Smart HVAC system',\n    potential_reduction_tons: Math.round(currentEmissions * 0.06 * 100) / 100,\n    investment_required: '$40,000',\n    payback_period: '4 years',\n    priority: 'Medium',\n    implementation_effort: 'Medium'\n  });\n  \n  const totalPotentialReduction = opportunities.reduce(\n    (sum, opp) => sum + opp.potential_reduction_tons, 0\n  );\n  \n  return {\n    current_footprint: data,\n    opportunities: opportunities,\n    total_potential_reduction_tons: Math.round(totalPotentialReduction * 100) / 100,\n    potential_reduction_percentage: Math.round((totalPotentialReduction / currentEmissions) * 100),\n    analysis_date: new Date().toISOString()\n  };\n}\n\nconst reductionAnalysis = findReductionOpportunities(footprintData);\n\nreturn [{ json: reductionAnalysis }];"
      },
      "typeVersion": 2
    },
    {
      "id": "f6g7h8i9-j0k1-2345-fghi-678901234567",
      "name": "지속가능성 대시보드",
      "type": "n8n-nodes-base.code",
      "position": [
        1800,
        800
      ],
      "parameters": {
        "jsCode": "// Sustainability Dashboard Data Formatter\nconst analysisData = $input.first().json;\n\nfunction createDashboardData(data) {\n  const footprint = data.current_footprint;\n  const opportunities = data.opportunities;\n  \n  // KPI Cards Data\n  const kpis = {\n    total_emissions: {\n      value: footprint.total_emissions_tons,\n      unit: 'tons CO2e',\n      trend: '+5.2%', // This would be calculated from historical data\n      status: footprint.total_emissions_tons > 100 ? 'warning' : 'good'\n    },\n    emissions_per_employee: {\n      value: footprint.emissions_per_employee,\n      unit: 'lbs CO2e/employee',\n      trend: '+2.1%',\n      status: 'improving'\n    },\n    reduction_potential: {\n      value: data.potential_reduction_percentage,\n      unit: '%',\n      trend: 'new',\n      status: 'opportunity'\n    },\n    cost_savings_potential: {\n      value: Math.round(data.total_potential_reduction_tons * 50), // $50 per ton estimate\n      unit: '$/year',\n      trend: 'projected',\n      status: 'positive'\n    }\n  };\n  \n  // Scope Breakdown for Charts\n  const scopeBreakdown = {\n    labels: ['Scope 1 (Direct)', 'Scope 2 (Electricity)', 'Scope 3 (Indirect)'],\n    data: [footprint.scope1_total, footprint.scope2_total, footprint.scope3_total],\n    colors: ['#FF6B6B', '#4ECDC4', '#45B7D1']\n  };\n  \n  // Monthly Trend (simulated - would be from historical data)\n  const monthlyTrend = {\n    labels: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'],\n    emissions: [85, 78, 92, 88, 95, footprint.total_emissions_tons],\n    target: [80, 80, 80, 80, 80, 80]\n  };\n  \n  // Top Opportunities for Action Items\n  const topOpportunities = opportunities\n    .sort((a, b) => b.potential_reduction_tons - a.potential_reduction_tons)\n    .slice(0, 5)\n    .map(opp => ({\n      ...opp,\n      impact_score: Math.round((opp.potential_reduction_tons / data.total_potential_reduction_tons) * 100)\n    }));\n  \n  return {\n    dashboard_data: {\n      kpis: kpis,\n      scope_breakdown: scopeBreakdown,\n      monthly_trend: monthlyTrend,\n      top_opportunities: topOpportunities,\n      last_updated: new Date().toISOString(),\n      next_update: new Date(Date.now() + 24*60*60*1000).toISOString()\n    },\n    raw_analysis: data\n  };\n}\n\nconst dashboardData = createDashboardData(analysisData);\n\nreturn [{ json: dashboardData }];"
      },
      "typeVersion": 2
    },
    {
      "id": "g7h8i9j0-k1l2-3456-ghij-789012345678",
      "name": "ESG 보고서 생성기",
      "type": "n8n-nodes-base.code",
      "position": [
        2200,
        800
      ],
      "parameters": {
        "jsCode": "// ESG Report Generator\nconst dashboardData = $input.first().json;\nconst data = dashboardData.raw_analysis;\nconst kpis = dashboardData.dashboard_data.kpis;\n\nfunction generateESGReport(analysisData, kpiData) {\n  const reportDate = new Date().toLocaleDateString('en-US', {\n    year: 'numeric',\n    month: 'long',\n    day: 'numeric'\n  });\n  \n  const executiveSummary = `\n**EXECUTIVE SUMMARY**\n\nOur organization's current carbon footprint stands at ${analysisData.current_footprint.total_emissions_tons} tons CO2e, with emissions per employee at ${analysisData.current_footprint.emissions_per_employee} lbs CO2e. \n\nWe have identified ${analysisData.opportunities.length} key reduction opportunities that could decrease our emissions by ${analysisData.potential_reduction_percentage}% (${analysisData.total_potential_reduction_tons} tons CO2e annually).\n\n**KEY FINDINGS:**\n• Scope 2 emissions (electricity) represent ${Math.round((analysisData.current_footprint.scope2_total / analysisData.current_footprint.total_emissions_lbs) * 100)}% of total emissions\n• Transportation accounts for ${Math.round(((analysisData.current_footprint.breakdown.scope3.employee_commute + analysisData.current_footprint.breakdown.scope1.fleet_fuel) / analysisData.current_footprint.total_emissions_lbs) * 100)}% of our footprint\n• High-impact, low-cost opportunities exist in remote work policies and energy efficiency\n  `;\n  \n  const emissionsBreakdown = `\n**EMISSIONS BREAKDOWN**\n\n**Scope 1 (Direct Emissions): ${Math.round(analysisData.current_footprint.scope1_total/2000*100)/100} tons CO2e**\n• Natural Gas: ${Math.round(analysisData.current_footprint.breakdown.scope1.natural_gas)} lbs CO2e\n• Fleet Vehicles: ${Math.round(analysisData.current_footprint.breakdown.scope1.fleet_fuel)} lbs CO2e\n\n**Scope 2 (Indirect - Electricity): ${Math.round(analysisData.current_footprint.scope2_total/2000*100)/100} tons CO2e**\n• Purchased Electricity: ${Math.round(analysisData.current_footprint.breakdown.scope2.electricity)} lbs CO2e\n\n**Scope 3 (Other Indirect): ${Math.round(analysisData.current_footprint.scope3_total/2000*100)/100} tons CO2e**\n• Employee Commuting: ${Math.round(analysisData.current_footprint.breakdown.scope3.employee_commute)} lbs CO2e\n• Business Travel: ${Math.round(analysisData.current_footprint.breakdown.scope3.air_travel)} lbs CO2e\n• Supply Chain: ${Math.round(analysisData.current_footprint.breakdown.scope3.supply_chain)} lbs CO2e\n  `;\n  \n  const opportunitiesSection = analysisData.opportunities.map(opp => \n    `• **${opp.opportunity}** (${opp.category})\\n  Reduction: ${opp.potential_reduction_tons} tons CO2e | Investment: ${opp.investment_required} | Priority: ${opp.priority}`\n  ).join('\\n\\n');\n  \n  const recommendations = `\n**STRATEGIC RECOMMENDATIONS**\n\n**Immediate Actions (0-6 months):**\n1. Implement remote work policy (3 days/week) - High impact, low cost\n2. Upgrade to LED lighting across all facilities\n3. Establish employee sustainability awareness program\n\n**Medium-term Goals (6-18 months):**\n1. Install smart HVAC systems with automated controls\n2. Conduct comprehensive energy audit of all facilities\n3. Develop supplier sustainability scorecard\n\n**Long-term Commitments (1-3 years):**\n1. Transition to renewable energy sources (solar installation)\n2. Electrify vehicle fleet where feasible\n3. Achieve carbon neutrality through verified offsets\n\n**Financial Impact:**\nTotal estimated annual savings from all initiatives: $${Math.round(analysisData.total_potential_reduction_tons * 50).toLocaleString()}\nPayback period for major investments: 3-7 years\n  `;\n  \n  const fullReport = `\n# 🌱 CARBON FOOTPRINT & ESG REPORT\n**Generated: ${reportDate}**\n**Reporting Period: Current Month**\n**Organization: [Company Name]**\n\n${executiveSummary}\n\n${emissionsBreakdown}\n\n**REDUCTION OPPORTUNITIES**\n\n${opportunitiesSection}\n\n${recommendations}\n\n**COMPLIANCE & BENCHMARKING**\n• Current emissions intensity: ${analysisData.current_footprint.emissions_per_employee} lbs CO2e per employee\n• Industry benchmark: 1,200-1,800 lbs CO2e per employee (service sector)\n• Science-based target alignment: Reduction pathway defined for 1.5°C scenario\n\n**NEXT STEPS**\n1. Present findings to executive leadership\n2. Allocate budget for priority initiatives\n3. Establish monthly monitoring and reporting cadence\n4. Engage employees in sustainability initiatives\n\n---\n*This report was automatically generated using real-time data collection and analysis. For questions or detailed implementation planning, contact the Sustainability Team.*\n  `;\n  \n  return {\n    report_text: fullReport,\n    report_date: reportDate,\n    report_type: 'Carbon Footprint & ESG Analysis',\n    key_metrics: {\n      total_emissions: analysisData.current_footprint.total_emissions_tons,\n      reduction_potential: analysisData.potential_reduction_percentage,\n      cost_savings_potential: Math.round(analysisData.total_potential_reduction_tons * 50),\n      opportunities_count: analysisData.opportunities.length\n    },\n    file_name: `Carbon_Footprint_Report_${new Date().toISOString().split('T')[0]}.md`\n  };\n}\n\nconst esgReport = generateESGReport(data, kpis);\n\nreturn [{ json: esgReport }];"
      },
      "typeVersion": 2
    },
    {
      "id": "h8i9j0k1-l2m3-4567-hijk-890123456789",
      "name": "보고서 폴더 생성",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        2600,
        700
      ],
      "parameters": {
        "name": "ESG_Reports",
        "options": {},
        "resource": "folder",
        "operation": "create"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "",
          "name": ""
        }
      },
      "typeVersion": 3
    },
    {
      "id": "i9j0k1l2-m3n4-5678-ijkl-901234567890",
      "name": "드라이브에 보고서 저장",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        2600,
        900
      ],
      "parameters": {
        "name": "={{ $json.file_name }}",
        "driveId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $node['Create Reports Folder'].json.id }}"
        },
        "options": {
          "parents": [
            "={{ $node['Create Reports Folder'].json.id }}"
          ]
        },
        "operation": "upload",
        "binaryData": false,
        "fileContent": "={{ $json.report_text }}"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "",
          "name": ""
        }
      },
      "typeVersion": 3
    },
    {
      "id": "sticky1-abcd-efgh-ijkl-mnop12345678",
      "name": "트리거 정보",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        100,
        450
      ],
      "parameters": {
        "color": 5,
        "width": 520,
        "height": 580,
        "content": "# Step 1: Daily Trigger ⏰\n\nThis trigger runs the carbon footprint analysis daily at 8:00 AM.\n\n## Configuration Options\n- **Schedule**: Daily at 8:00 AM (customizable)\n- **Alternative**: Manual trigger for on-demand analysis\n- **Timezone**: Adjustable based on your location\n\n## Purpose\n- Ensures consistent daily monitoring\n- Captures real-time data changes\n- Maintains historical tracking"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky2-bcde-fghi-jklm-nopq23456789",
      "name": "데이터 수집 정보",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        400,
        450
      ],
      "parameters": {
        "color": 4,
        "width": 520,
        "height": 580,
        "content": "# Step 2: Data Collection 🌐\n\n**Energy Data Scraper** and **Transport Data Scraper** work in parallel to gather emission factors.\n\n## What it does\n- Scrapes EPA energy consumption data\n- Collects transportation emission factors\n- Gathers fuel efficiency metrics\n- Updates carbon conversion factors\n\n## Data Sources\n- EPA Greenhouse Gas Calculator\n- FuelEconomy.gov\n- Energy.gov databases"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky3-cdef-ghij-klmn-opqr34567890",
      "name": "계산기 정보",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        800,
        450
      ],
      "parameters": {
        "color": 3,
        "width": 520,
        "height": 580,
        "content": "# Step 3: Footprint Calculator 🧮\n\nCalculates comprehensive carbon footprint across all scopes.\n\n## Calculations Include\n- **Scope 1**: Direct emissions (gas, fleet)\n- **Scope 2**: Electricity consumption\n- **Scope 3**: Commuting, travel, supply chain\n- **Per-employee metrics**\n- **Monthly comparisons**\n\n## Output\n- Total emissions in tons CO2e\n- Detailed breakdown by source\n- Baseline data for tracking"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky4-defg-hijk-lmno-pqrs45678901",
      "name": "기회 정보",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1200,
        450
      ],
      "parameters": {
        "color": 6,
        "width": 520,
        "height": 580,
        "content": "# Step 4: Opportunity Analysis 🎯\n\nIdentifies specific reduction opportunities with ROI analysis.\n\n## Analysis Areas\n- **Energy Efficiency**: LED, HVAC, smart systems\n- **Renewable Energy**: Solar, wind options\n- **Transportation**: Remote work, EV fleet\n- **Operations**: Process improvements\n\n## For Each Opportunity\n- Potential CO2 reduction\n- Investment required\n- Payback period\n- Implementation difficulty"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky5-efgh-ijkl-mnop-qrst56789012",
      "name": "대시보드 정보",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1600,
        450
      ],
      "parameters": {
        "color": 2,
        "width": 520,
        "height": 580,
        "content": "# Step 5: Dashboard Preparation 📊\n\nFormats data for sustainability dashboard visualization.\n\n## Dashboard Elements\n- **KPI Cards**: Key metrics with trends\n- **Scope Breakdown**: Pie charts by emission source\n- **Monthly Trends**: Historical progress tracking\n- **Action Items**: Priority opportunities\n\n## Data Outputs\n- Chart-ready JSON data\n- KPI summaries\n- Status indicators\n- Performance trends"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky6-fghi-jklm-nopq-rstu67890123",
      "name": "ESG 보고서 정보",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2000,
        450
      ],
      "parameters": {
        "color": 1,
        "width": 520,
        "height": 580,
        "content": "# Step 6: ESG Report Generation 📋\n\nCreates comprehensive ESG compliance report.\n\n## Report Sections\n- **Executive Summary**: Key findings\n- **Emissions Breakdown**: Detailed analysis\n- **Reduction Opportunities**: Prioritized list\n- **Strategic Recommendations**: Action plan\n- **Financial Impact**: Cost-benefit analysis\n\n## Compliance Features\n- Science-based targets alignment\n- Industry benchmarking\n- Regulatory compliance tracking"
      },
      "typeVersion": 1
    },
    {
      "id": "sticky7-ghij-klmn-opqr-stuv78901234",
      "name": "저장 정보",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2400,
        450
      ],
      "parameters": {
        "color": 7,
        "width": 520,
        "height": 580,
        "content": "# Step 7: Report Storage 💾\n\nSaves generated reports to Google Drive for team access.\n\n## Storage Features\n- **Organized Folders**: ESG_Reports directory\n- **Version Control**: Date-stamped files\n- **Team Access**: Shared drive integration\n- **Format**: Markdown for easy reading\n\n## File Management\n- Automatic folder creation\n- Standardized naming convention\n- Historical report retention\n- Easy sharing and collaboration"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "carbon-footprint-v1-2025-001",
  "connections": {
    "a1b2c3d4-e5f6-7890-abcd-ef1234567890": {
      "main": [
        [
          {
            "node": "b2c3d4e5-f6g7-8901-bcde-f23456789012",
            "type": "main",
            "index": 0
          },
          {
            "node": "c3d4e5f6-g7h8-9012-cdef-345678901234",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b2c3d4e5-f6g7-8901-bcde-f23456789012": {
      "main": [
        [
          {
            "node": "d4e5f6g7-h8i9-0123-defg-456789012345",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "g7h8i9j0-k1l2-3456-ghij-789012345678": {
      "main": [
        [
          {
            "node": "h8i9j0k1-l2m3-4567-hijk-890123456789",
            "type": "main",
            "index": 0
          },
          {
            "node": "i9j0k1l2-m3n4-5678-ijkl-901234567890",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d4e5f6g7-h8i9-0123-defg-456789012345": {
      "main": [
        [
          {
            "node": "e5f6g7h8-i9j0-1234-efgh-567890123456",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "i9j0k1l2-m3n4-5678-ijkl-901234567890": {
      "main": [
        []
      ]
    },
    "h8i9j0k1-l2m3-4567-hijk-890123456789": {
      "main": [
        [
          {
            "node": "i9j0k1l2-m3n4-5678-ijkl-901234567890",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c3d4e5f6-g7h8-9012-cdef-345678901234": {
      "main": [
        [
          {
            "node": "d4e5f6g7-h8i9-0123-defg-456789012345",
            "type": "main",
            "index": 1
          }
        ]
      ]
    },
    "f6g7h8i9-j0k1-2345-fghi-678901234567": {
      "main": [
        [
          {
            "node": "g7h8i9j0-k1l2-3456-ghij-789012345678",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "e5f6g7h8-i9j0-1234-efgh-567890123456": {
      "main": [
        [
          {
            "node": "f6g7h8i9-j0k1-2345-fghi-678901234567",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
자주 묻는 질문

이 워크플로우를 어떻게 사용하나요?

위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.

이 워크플로우는 어떤 시나리오에 적합한가요?

고급 - 문서 추출, AI 요약

유료인가요?

이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.

워크플로우 정보
난이도
고급
노드 수16
카테고리2
노드 유형5
난이도 설명

고급 사용자를 위한 16+개 노드의 복잡한 워크플로우

외부 링크
n8n.io에서 보기

이 워크플로우 공유

카테고리

카테고리: 34