호출 센터 분석(DeepSeek 모델 양AI 검증)
중급
이것은CRM, AI Summarization분야의자동화 워크플로우로, 15개의 노드를 포함합니다.주로 Code, Webhook, HttpRequest, ManualTrigger, ChainLlm 등의 노드를 사용하며. DeepSeek 모델을 사용하여 양AI��증의 전화 센터 분석
사전 요구사항
- •HTTP Webhook 엔드포인트(n8n이 자동으로 생성)
- •대상 API의 인증 정보가 필요할 수 있음
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
"meta": {
"instanceId": "66ce8bb89c7868f862e0d2e755cd17c6a5aea7904e5504a5b2e292e317980443",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "613422d5-05db-4163-bcb0-3fdae9de260b",
"name": "워크플로우 '테스트' 클릭 시",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-1120,
60
],
"parameters": {},
"typeVersion": 1
},
{
"id": "9ec28d5b-6ea0-4a57-911e-9f4546b739a2",
"name": "메모지",
"type": "n8n-nodes-base.stickyNote",
"position": [
-520,
-240
],
"parameters": {
"color": 7,
"width": 340,
"height": 440,
"content": "## Generate report\nUsing deepseek R1"
},
"typeVersion": 1
},
{
"id": "cf30eb86-2aad-4d33-a5c2-737239e63636",
"name": "메모지1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-140,
-240
],
"parameters": {
"color": 7,
"width": 340,
"height": 440,
"content": "## Double-check\nUsing deepseek V3"
},
"typeVersion": 1
},
{
"id": "d799760f-83c5-4603-8eb8-3857807b364a",
"name": "HTTP 요청",
"type": "n8n-nodes-base.httpRequest",
"position": [
300,
-140
],
"parameters": {
"url": "YOUR_CALL_BACK_API",
"method": "POST",
"options": {},
"jsonBody": "={\n data: \"{{$node['Report'].json.text}}\"\n}",
"sendBody": true,
"specifyBody": "json"
},
"typeVersion": 4.2
},
{
"id": "bf0a8ab6-06e0-4564-96af-ddcf6795a845",
"name": "보고서",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
-480,
-140
],
"parameters": {
"text": "=You are a CRM data analyst assistant. Your task is to analyze the provided CRM data and generate valuable insights in Markdown format.\n\nYou will receive JSON data extracted from a CRM system that may include information about:\n- Call canter agents metrics.\n\n# ANALYSIS REQUIREMENTS\nAnalyze the data considering:\n1. Lead conversion rates and quality metrics\n2. Upsall\n3. Rank the agents with small description about every one.\n\n# OUTPUT FORMAT\nStructure your analysis in Markdown.\n\n# GUIDELINES\n- Focus on actionable insights rather than just describing the data\n- Use bullet points and tables when appropriate to improve readability\n- Include both positive findings and areas for improvement\n- Reference specific data points to support your analysis\n- Prioritize quality over quantity in your recommendations\n- Be concise yet thorough\n- If there are data quality issues or missing information, note these limitations\n- If you detect any unusual patterns or anomalies, highlight them\n\n# DATA\n```\n{{ JSON.stringify($input.first().json.body) }}\n```",
"promptType": "define"
},
"typeVersion": 1.6
},
{
"id": "f51d601e-898c-4dd6-894b-2e4911a334db",
"name": "DeepSeek 추론",
"type": "@n8n/n8n-nodes-langchain.lmChatDeepSeek",
"position": [
-400,
60
],
"parameters": {
"model": "deepseek-reasoner",
"options": {}
},
"credentials": {
"deepSeekApi": {
"id": "ltpFxb7M3kHaEBFD",
"name": "DeepSeek account"
}
},
"typeVersion": 1
},
{
"id": "9393be48-aebc-4f6c-b445-014633e0e289",
"name": "DeepSeek 채팅",
"type": "@n8n/n8n-nodes-langchain.lmChatDeepSeek",
"position": [
-20,
80
],
"parameters": {
"options": {}
},
"credentials": {
"deepSeekApi": {
"id": "ltpFxb7M3kHaEBFD",
"name": "DeepSeek account"
}
},
"typeVersion": 1
},
{
"id": "4a8dc360-fd3f-46a5-89e1-87ece59b0bb6",
"name": "예시 데이터",
"type": "n8n-nodes-base.code",
"position": [
-860,
60
],
"parameters": {
"jsCode": "return {\n \"body\": \n // You can use any data as JSON\n // this is just example\n // data start here\n [\n {\n \"user\": {\n \"id\": 15,\n \"full_name\": \"lisa confirmation\",\n },\n \"productivity\": 44.67,\n \"total_leads\": 465,\n \"total_confirmed\": 291,\n \"total_delivred\": 130,\n \"total_in_proccess\": 119,\n \"total_cancled\": 0,\n \"total_returned\": 13,\n \"total_assign\": 495,\n \"total_need_confirmation\": 0,\n \"total_recheck\": 22,\n \"upsell\": 59,\n \"upsell_delivered\": 27,\n \"confirmation_rate\": 62.58\n },\n {\n \"user\": {\n \"id\": 1346,\n \"full_name\": \"Sallam Confirmation\",\n },\n \"productivity\": 42.29,\n \"total_leads\": 374,\n \"total_confirmed\": 253,\n \"total_delivred\": 107,\n \"total_in_proccess\": 96,\n \"total_cancled\": 0,\n \"total_returned\": 21,\n \"total_assign\": 459,\n \"total_need_confirmation\": 1,\n \"total_recheck\": 1,\n \"upsell\": 62,\n \"upsell_delivered\": 31,\n \"confirmation_rate\": 67.65\n }\n ]\n // data end here\n}"
},
"typeVersion": 2
},
{
"id": "41e36370-fa7a-4f6e-a439-15127dfc432d",
"name": "메모지2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1160,
-20
],
"parameters": {
"width": 480,
"height": 240,
"content": "## Test Workflow\nClick this button to test the workflow with example data"
},
"typeVersion": 1
},
{
"id": "e0d473e8-7a2e-4473-9af7-5f2f835990db",
"name": "메모지8",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1160,
240
],
"parameters": {
"width": 480,
"height": 80,
"content": "## Just to test"
},
"typeVersion": 1
},
{
"id": "b0c31c3b-1fd0-485e-a54b-9a3045bcf09e",
"name": "메모지7",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1160,
400
],
"parameters": {
"color": 4,
"width": 1540,
"height": 100,
"content": "## Do you need more help or have any suggestions?\nContact me at mediaplus.ma@gmail.com"
},
"typeVersion": 1
},
{
"id": "9a1f03ee-167f-44e3-ae12-61ab8d3789f2",
"name": "메모지6",
"type": "n8n-nodes-base.stickyNote",
"position": [
-520,
-360
],
"parameters": {
"color": 7,
"width": 720,
"height": 80,
"content": "## Change here\nYou can edit/add details about your goal by changing the AI promps.\n"
},
"typeVersion": 1
},
{
"id": "d91de9c8-835b-4232-a76b-e27554ad595d",
"name": "Webhook",
"type": "n8n-nodes-base.webhook",
"position": [
-980,
-300
],
"webhookId": "b408defb-315d-4676-b4c4-1dcebe81ffc0",
"parameters": {
"path": "b408defb-315d-4676-b4c4-1dcebe81ffc0",
"options": {},
"httpMethod": [
"POST",
"GET"
],
"multipleMethods": true
},
"typeVersion": 2
},
{
"id": "04c2da18-10c9-44df-8084-52b5901ecc18",
"name": "메모지9",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1020,
-380
],
"parameters": {
"color": 4,
"width": 200,
"height": 240,
"content": "## Production"
},
"typeVersion": 1
},
{
"id": "a1fb1cbc-391c-4918-b48f-8b44116921b8",
"name": "재확인",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
-100,
-140
],
"parameters": {
"text": "=You are a Data Analysis Verification Expert. Your task is to evaluate whether an AI-generated report accurately and completely analyzes the provided CRM data. You will assess the report quality and determine if it's compatible with the original input.\n\n# INPUT\nYou will receive:\n1. The original call center agent metrics data (JSON)\n2. The AI-generated analysis report in Markdown\n\n# VERIFICATION REQUIREMENTS\nEvaluate the report for:\n1. Factual accuracy - Do all numbers, rankings, and statements accurately reflect the data?\n2. Comprehensiveness - Does the report cover all required areas? (Lead conversion, Upsell, Agent ranking)\n3. Insight quality - Does the report provide meaningful insights beyond basic data description?\n4. Completeness - Are all agents included in the analysis?\n5. Format compliance - Is the report properly formatted in Markdown with appropriate sections?\n\n# OUTPUT FORMAT\nReturn a JSON object with the following structure:\n```json\n{\n \"verified\": true/false,\n \"score\": 1-10,\n \"quality_assessment\": \"Brief 2-4 sentence evaluation of report quality\",\n \"missing_elements\": [\"List any required elements missing from the report\"],\n \"inaccuracies\": [\"List any factual errors or misinterpretations\"],\n \"improvement_suggestions\": [\"Specific suggestions for report improvement\"]\n}\n```\n\n# EVALUATION CRITERIA\n- \"verified\": Set to true ONLY if the report is factually accurate, includes all agents, covers all required areas, and provides meaningful insights.\n- \"score\": Rate from 1-10 where:\n * 1-3: Poor report with major inaccuracies or missing elements\n * 4-6: Adequate report with some issues\n * 7-8: Good report with minor issues\n * 9-10: Excellent report with comprehensive analysis\n\n# GUIDELINES\n- Be thorough and precise in your verification\n- Check all numerical claims against the original data\n- Verify that all agents are properly ranked and described\n- Check that lead conversion rates and upsell metrics are accurately analyzed\n- Assess whether the insights are actionable and valuable\n- Maintain a balanced perspective, noting both strengths and weaknesses\n\n# ORIGINAL DATA\n{{ JSON.stringify($node[\"Example data\"].json.chatInput) }}\n\n# AI-GENERATED REPORT\n{{ $json.text }}",
"promptType": "define"
},
"typeVersion": 1.6
}
],
"pinData": {},
"connections": {
"bf0a8ab6-06e0-4564-96af-ddcf6795a845": {
"main": [
[
{
"node": "a1fb1cbc-391c-4918-b48f-8b44116921b8",
"type": "main",
"index": 0
}
]
]
},
"a1fb1cbc-391c-4918-b48f-8b44116921b8": {
"main": [
[
{
"node": "d799760f-83c5-4603-8eb8-3857807b364a",
"type": "main",
"index": 0
}
]
]
},
"d91de9c8-835b-4232-a76b-e27554ad595d": {
"main": [
[
{
"node": "bf0a8ab6-06e0-4564-96af-ddcf6795a845",
"type": "main",
"index": 0
}
]
]
},
"4a8dc360-fd3f-46a5-89e1-87ece59b0bb6": {
"main": [
[
{
"node": "bf0a8ab6-06e0-4564-96af-ddcf6795a845",
"type": "main",
"index": 0
}
]
]
},
"9393be48-aebc-4f6c-b445-014633e0e289": {
"ai_languageModel": [
[
{
"node": "a1fb1cbc-391c-4918-b48f-8b44116921b8",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"f51d601e-898c-4dd6-894b-2e4911a334db": {
"ai_languageModel": [
[
{
"node": "bf0a8ab6-06e0-4564-96af-ddcf6795a845",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"613422d5-05db-4163-bcb0-3fdae9de260b": {
"main": [
[
{
"node": "4a8dc360-fd3f-46a5-89e1-87ece59b0bb6",
"type": "main",
"index": 0
}
]
]
}
}
}자주 묻는 질문
이 워크플로우를 어떻게 사용하나요?
위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.
이 워크플로우는 어떤 시나리오에 적합한가요?
중급 - 고객관계관리, AI 요약
유료인가요?
이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.
관련 워크플로우 추천
비즈니스 일일 지표 모니터링
Gemini를 사용하여 스프레드시트에서 판매 인사이트 자동 생성 및 팀에 즉시 알림
Code
Gmail
Trello
+
Code
Gmail
Trello
15 노드Rully Saputra
고객관계관리
01 AI 미디어 바이어를 사용한 Facebook 광고 성과 분석 및 Google Sheets로 인사이트 전송
Gemini AI를 사용한 Facebook 광고 분석 및 Google Sheets로 인사이트 전송
If
Set
Code
+
If
Set
Code
34 노드JJ Tham
시장 조사
리드 생성 및 이메일 워크플로
Google 지도, SendGrid 및 AI를 사용한 B2B 잠재 고객 개발 및 이메일 마케팅 자동화
If
Set
Code
+
If
Set
Code
141 노드Ezema Kingsley Chibuzo
리드 생성
Gitlab 코드 리뷰 템플릿
Gemini AI와 JIRA 컨텍스트를 사용한 GitLab 병합 요청 코드 리뷰 자동화
If
Set
Code
+
If
Set
Code
41 노드Evgeny Agronsky
AI 요약
LLM 테스트 자동화: GPT-4 평가 및 Google Sheets 추적
LLM 테스트 자동화: GPT-4 평가 및 Google Sheets 추적
Set
Limit
Merge
+
Set
Limit
Merge
17 노드Adam Janes
엔지니어링
VEXA, OpenAI 및 Mem0를 사용한 회의 인텔리전스 분석 자동화
VEXA, OpenAI 및 Mem0를 사용한 자동화된 회의 대화 인사이트 분석
Set
Code
Merge
+
Set
Code
Merge
26 노드Stephan Koning
문서 추출
워크플로우 정보
난이도
중급
노드 수15
카테고리2
노드 유형7
저자
Omar Akoudad
@mediaplusmaAutomation, Code, and Analytics for E-commerce businesses, We help businesses streamline operations using n8n, AI agents, and data science to enhance efficiency and scalability.
외부 링크
n8n.io에서 보기 →
이 워크플로우 공유