8
n8n 한국어amn8n.com

최고 재무 책임자 예측 에이전트

고급

이것은AI, IT Ops분야의자동화 워크플로우로, 16개의 노드를 포함합니다.주로 Set, Code, Stripe, Supabase, GoogleSheets 등의 노드를 사용하며인공지능 기술을 결합하여 스마트 자동화를 구현합니다. Stripe 데이터 기반 GPT-4 및 Google Sheets 자동화 수익 예측

사전 요구사항
  • Stripe API Key
  • Supabase URL과 API Key
  • Google Sheets API 인증 정보
  • OpenAI API Key
  • Pinecone API Key
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
  "id": "mHSoMMyypmRzfVZn",
  "meta": {
    "instanceId": "84ad02d6104594179f43f1ce9cfe3a81637b2faedb57dafcb9e649b7542988db"
  },
  "name": "CFO forecasting Agent",
  "tags": [],
  "nodes": [
    {
      "id": "b946638e-ba68-4d73-816e-00f3a63d138f",
      "name": "구조화된 출력 파서",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        1420,
        220
      ],
      "parameters": {
        "jsonSchemaExample": "{\n  \"forecast\": {\n    \"June 2025\": \"$X,XXX.XX\",\n    \"July 2025\": \"$X,XXX.XX\",\n    \"August 2025\": \"$X,XXX.XX\"\n  },\n  \"trend\": \"Increasing / Decreasing / Stable\",\n  \"confidence\": \"High / Medium / Low\",\n  \"insights\": \"Short explanation of why this trend is predicted.\"\n}"
      },
      "typeVersion": 1.2
    },
    {
      "id": "d80c3670-e8c8-43ee-ba12-2e0e18b99862",
      "name": "OpenAI 채팅 모델",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        1180,
        220
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "wYwTjEv45IzlAOAu",
          "name": "OpenAi account 2"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "bb75cafb-9dad-4952-89af-0658c4d88aa4",
      "name": "Pinecone 벡터 저장소",
      "type": "@n8n/n8n-nodes-langchain.vectorStorePinecone",
      "position": [
        1200,
        400
      ],
      "parameters": {
        "mode": "retrieve-as-tool",
        "options": {},
        "toolName": "Sales_data",
        "pineconeIndex": {
          "__rl": true,
          "mode": "list",
          "value": "new",
          "cachedResultName": "new"
        },
        "toolDescription": "The data about stripe sales"
      },
      "credentials": {
        "pineconeApi": {
          "id": "PSI5CiZnLRSkEgJg",
          "name": "PineconeApi account"
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "7d370700-89d9-4163-8070-4a0c643531ca",
      "name": "OpenAI 임베딩",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        1140,
        600
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "wYwTjEv45IzlAOAu",
          "name": "OpenAi account 2"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "81de1ecf-75de-44fd-9e62-c381e907c1e1",
      "name": "일일 예측 실행",
      "type": "n8n-nodes-base.scheduleTrigger",
      "position": [
        0,
        0
      ],
      "parameters": {
        "rule": {
          "interval": [
            {
              "triggerAtHour": 9
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "9ce2e0e4-8784-4ed9-9499-b5f54241d04e",
      "name": "Stripe 청구 내역 가져오기",
      "type": "n8n-nodes-base.stripe",
      "position": [
        220,
        0
      ],
      "parameters": {
        "resource": "charge",
        "operation": "getAll",
        "returnAll": true
      },
      "typeVersion": 1
    },
    {
      "id": "c115eb0c-6877-46db-bf03-55e48527dbc5",
      "name": "판매 요약",
      "type": "n8n-nodes-base.code",
      "position": [
        440,
        0
      ],
      "parameters": {
        "jsCode": "const charges = items.map(item => item.json);\nconst summary = charges.reduce((acc, charge) => {\n  const date = new Date(charge.created * 1000).toISOString().split(\"T\")[0];\n  acc[date] = (acc[date] || 0) + charge.amount / 100;\n  return acc;\n}, {});\nreturn [{ json: { summary } }];\n"
      },
      "typeVersion": 2
    },
    {
      "id": "fb33581a-9f41-49d7-a722-a68dfe5bc265",
      "name": "데이터 준비",
      "type": "n8n-nodes-base.set",
      "position": [
        660,
        0
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "6aa7f5d2-3aa4-4d4c-85df-0d56bb7b6c9e",
              "name": "summary",
              "type": "string",
              "value": "={{ $json.summary }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "d3458681-2654-4e22-8b2d-1711b60ed592",
      "name": "예측 에이전트",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        1240,
        0
      ],
      "parameters": {
        "text": "=You are a CFO AI Agent. Based on the following Stripe sales data:\n\n{{ $json.summary }}\n\nAnalyze the trends, identify any patterns (growth, decline, seasonality), and forecast expected daily or weekly revenue for the next 3 months.",
        "options": {},
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 1.9
    },
    {
      "id": "325e4952-868c-460a-aa78-2e718477cc78",
      "name": "Supabase에 예측 저장",
      "type": "n8n-nodes-base.supabase",
      "position": [
        2100,
        -160
      ],
      "parameters": {
        "dataToSend": "autoMapInputData"
      },
      "typeVersion": 1
    },
    {
      "id": "9fd6efab-edc6-49be-9516-f2d36e1995b2",
      "name": "Google 시트에 예측 기록",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        2100,
        120
      ],
      "parameters": {
        "columns": {
          "value": {
            "trend": "={{ $json.output.trend }}",
            "forecast": "={{ $json.output.forecast }}",
            "insights": "={{ $json.output.insights }}",
            "confidence": "={{ $json.output.confidence }}"
          },
          "schema": [
            {
              "id": "forecast",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "forecast",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "trend",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "trend",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "confidence",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "confidence",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "insights",
              "type": "string",
              "display": true,
              "required": false,
              "displayName": "insights",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "append",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": "gid=0",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/108tyyL--yUCbDk4drB__eztLSwjlxcmoRkqYsFnMLrY/edit#gid=0",
          "cachedResultName": "Sheet1"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "108tyyL--yUCbDk4drB__eztLSwjlxcmoRkqYsFnMLrY",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/108tyyL--yUCbDk4drB__eztLSwjlxcmoRkqYsFnMLrY/edit?usp=drivesdk",
          "cachedResultName": "CFO Forecasting"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "K5yYfUnKFTqaRn6A",
          "name": "Google Sheets account"
        }
      },
      "typeVersion": 4.5
    },
    {
      "id": "241e625d-7019-4919-9f93-137461ad94bf",
      "name": "스티키 노트",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -40,
        -1820
      ],
      "parameters": {
        "color": 3,
        "width": 840,
        "height": 2120,
        "content": "## 1️⃣ **🔁 Data Retrieval & Preprocessing**\n\n**Nodes:**\n\n* 🕒 `Run Daily Forecast`\n* 🟦 `Fetch Stripe Charges`\n* 🧩 `Summarize Daily Sales`\n* ✏️ `Prepare Forecast Prompt`\n\n---\n\n### 🕒 `Run Daily Forecast`\n\n**Type:** Cron Trigger\n**Purpose:**\nAutomatically runs the workflow every day to keep forecasts updated with the latest sales data.\n\n🔧 **Configuration:**\n\n* Schedule: Daily at 6 AM UTC (or as needed)\n\n---\n\n### 🟦 `Fetch Stripe Charges`\n\n**Type:** Stripe Node\n**Purpose:**\nRetrieves all successful transactions from Stripe in a defined timeframe.\n\n📥 **Details:**\n\n* Resource: `Charges`\n* Operation: `Get Many`\n* Filters:\n\n  * `created[gte]` (e.g. last 30 days)\n  * `status: succeeded`\n* Expansion (optional): `data.customer` for customer context\n\n✅ **Output:** Raw Stripe sales data with timestamps and amounts\n\n---\n\n### 🧩 `Summarize Daily Sales`\n\n**Type:** Code Node\n**Purpose:**\nProcesses Stripe charges and summarizes revenue per day.\n\n🧠 **Logic:**\n\n* Converts Unix timestamps to `YYYY-MM-DD`\n* Aggregates total revenue per day\n* Converts cents to dollars\n\n📦 **Output Sample:**\n\n```json\n{\n  \"2025-05-01\": 1245.50,\n  \"2025-05-02\": 980.00\n}\n```\n\n---\n\n### ✏️ `Prepare Forecast Prompt`\n\n**Type:** Edit Fields / Function\n**Purpose:**\nFormats the summary into a natural language prompt for OpenAI.\n\n🧠 **Example Prompt:**\n\n```txt\nGiven the following sales data:\n{ \"2025-05-01\": 1245.50, ... }\n\nPredict trends and forecast sales for the next 3 months.\n```\n\n🧾 **Output:** `prompt` (String) → sent to the AI Agent\n"
      },
      "typeVersion": 1
    },
    {
      "id": "f60c6c15-8449-457a-aaad-2ebca8d75318",
      "name": "스티키 노트1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        940,
        -1880
      ],
      "parameters": {
        "color": 6,
        "width": 840,
        "height": 2680,
        "content": "## 2️⃣ **🤖 AI Agent Forecasting**\n\n**Nodes:**\n\n* 🤖 `Forecast with OpenAI Agent`\n* 🧠 `OpenAI GPT-4 Model`\n* 📄 `Extract Forecast Output`\n* 🌲 `Store Context in Pinecone` *(Optional)*\n* 🧬 `Generate Embeddings` *(Optional)*\n\n---\n\n### 🤖 `Forecast with OpenAI Agent`\n\n**Type:** Tools Agent\n**Purpose:**\nActs as an intelligent agent that reads the sales summary and responds with forecasts and reasoning.\n\n🧠 **Prompt Input:**\nPassed from `Prepare Forecast Prompt`\n\n💬 **Uses:**\n\n* Model: `GPT-4`\n* Output Parser: Structured JSON format\n\n📈 **Forecast Intent:**\nPredicts next 3 months, identifies trends, and gives a confidence level\n\n---\n\n### 🧠 `OpenAI GPT-4 Model`\n\n**Type:** OpenAI Node\n**Purpose:**\nHandles the natural language generation based on the supplied prompt.\n\n🧾 **Configuration:**\n\n* Model: `gpt-4` or `gpt-4-turbo`\n* Temperature: `0.2` (more deterministic)\n* Max Tokens: `1000`\n\n---\n\n### 📄 `Extract Forecast Output`\n\n**Type:** Structured Output Parser\n**Purpose:**\nParses the GPT response into usable JSON format.\n\n📦 **Expected Output:**\n\n```json\n{\n  \"forecast\": {\n    \"June\": \"$15,000.00\",\n    \"July\": \"$16,500.00\",\n    \"August\": \"$17,200.00\"\n  },\n  \"trend\": \"Increasing\",\n  \"confidence\": \"High\",\n  \"insights\": \"Sales show strong momentum...\"\n}\n```\n\n---\n\n### 🌲 `Store Context in Pinecone` *(optional)*\n\n**Type:** Vector Store\n**Purpose:**\nIndexes past data for retrieval-based prompting (RAG). Useful for long-term memory.\n\n---\n\n### 🧬 `Generate Embeddings` *(optional)*\n\n**Type:** Embeddings Node\n**Purpose:**\nConverts text into vector format before inserting into Pinecone."
      },
      "typeVersion": 1
    },
    {
      "id": "8e9b2ea7-58bb-4f62-a69c-eed70032019c",
      "name": "스티키 노트2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1920,
        -1220
      ],
      "parameters": {
        "color": 5,
        "width": 460,
        "height": 1560,
        "content": "## 3️⃣ **📦 Storage & Reporting**\n\n**Nodes:**\n\n* 🟩 `Save Forecast to Supabase`\n* 📊 `Log Forecast in Google Sheets`\n\n---\n\n### 🟩 `Save Forecast to Supabase`\n\n**Type:** Supabase Node\n**Purpose:**\nStores all forecast results for analytics, versioning, or historical comparisons.\n\n🛢️ **Table:** `forecasts`\n🧾 **Columns Example:**\n\n| timestamp  | raw\\_data | forecast\\_data |\n| ---------- | --------- | -------------- |\n| 2025-05-29 | {...}     | {...}          |\n\n---\n\n### 📊 `Log Forecast in Google Sheets`\n\n**Type:** Google Sheets Node\n**Purpose:**\nPushes structured data into a visual format for reporting dashboards or human review.\n\n📋 **Column Format:**\n\n| Date       | Forecast (USD) | Trend      | Confidence | Insights                   |\n| ---------- | -------------- | ---------- | ---------- | -------------------------- |\n| 2025-05-29 | \\$15,000.00    | Increasing | High       | Sales rising at 10% weekly |\n\n---\n\n## ✅ Summary Flow\n\n```txt\n🔁 Sales Data (Stripe) \n → 🧠 Forecast Agent (OpenAI) \n → 📦 Stored in Supabase \n → 📊 Reported in Google Sheets"
      },
      "typeVersion": 1
    },
    {
      "id": "7d1186c9-cba1-4876-a405-fa67773b8dad",
      "name": "스티키 노트9",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1840,
        -1800
      ],
      "parameters": {
        "color": 4,
        "width": 1300,
        "height": 320,
        "content": "=======================================\n            WORKFLOW ASSISTANCE\n=======================================\nFor any questions or support, please contact:\n    Yaron@nofluff.online\n\nExplore more tips and tutorials here:\n   - YouTube: https://www.youtube.com/@YaronBeen/videos\n   - LinkedIn: https://www.linkedin.com/in/yaronbeen/\n=======================================\n"
      },
      "typeVersion": 1
    },
    {
      "id": "2b9e9108-8084-4e3f-a620-5bee07040bc3",
      "name": "스티키 노트4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1840,
        -1460
      ],
      "parameters": {
        "color": 4,
        "width": 1289,
        "height": 4778,
        "content": "# 📊 CFO Forecasting Agent – Workflow Documentation\n\n---\n\n## 1️⃣ **🔁 Data Retrieval & Preprocessing**\n\n**Nodes:**\n\n* 🕒 `Run Daily Forecast`\n* 🟦 `Fetch Stripe Charges`\n* 🧩 `Summarize Daily Sales`\n* ✏️ `Prepare Forecast Prompt`\n\n---\n\n### 🕒 `Run Daily Forecast`\n\n**Type:** Cron Trigger\n**Purpose:**\nAutomatically runs the workflow every day to keep forecasts updated with the latest sales data.\n\n🔧 **Configuration:**\n\n* Schedule: Daily at 6 AM UTC (or as needed)\n\n---\n\n### 🟦 `Fetch Stripe Charges`\n\n**Type:** Stripe Node\n**Purpose:**\nRetrieves all successful transactions from Stripe in a defined timeframe.\n\n📥 **Details:**\n\n* Resource: `Charges`\n* Operation: `Get Many`\n* Filters:\n\n  * `created[gte]` (e.g. last 30 days)\n  * `status: succeeded`\n* Expansion (optional): `data.customer` for customer context\n\n✅ **Output:** Raw Stripe sales data with timestamps and amounts\n\n---\n\n### 🧩 `Summarize Daily Sales`\n\n**Type:** Code Node\n**Purpose:**\nProcesses Stripe charges and summarizes revenue per day.\n\n🧠 **Logic:**\n\n* Converts Unix timestamps to `YYYY-MM-DD`\n* Aggregates total revenue per day\n* Converts cents to dollars\n\n📦 **Output Sample:**\n\n```json\n{\n  \"2025-05-01\": 1245.50,\n  \"2025-05-02\": 980.00\n}\n```\n\n---\n\n### ✏️ `Prepare Forecast Prompt`\n\n**Type:** Edit Fields / Function\n**Purpose:**\nFormats the summary into a natural language prompt for OpenAI.\n\n🧠 **Example Prompt:**\n\n```txt\nGiven the following sales data:\n{ \"2025-05-01\": 1245.50, ... }\n\nPredict trends and forecast sales for the next 3 months.\n```\n\n🧾 **Output:** `prompt` (String) → sent to the AI Agent\n\n---\n\n## 2️⃣ **🤖 AI Agent Forecasting**\n\n**Nodes:**\n\n* 🤖 `Forecast with OpenAI Agent`\n* 🧠 `OpenAI GPT-4 Model`\n* 📄 `Extract Forecast Output`\n* 🌲 `Store Context in Pinecone` *(Optional)*\n* 🧬 `Generate Embeddings` *(Optional)*\n\n---\n\n### 🤖 `Forecast with OpenAI Agent`\n\n**Type:** Tools Agent\n**Purpose:**\nActs as an intelligent agent that reads the sales summary and responds with forecasts and reasoning.\n\n🧠 **Prompt Input:**\nPassed from `Prepare Forecast Prompt`\n\n💬 **Uses:**\n\n* Model: `GPT-4`\n* Output Parser: Structured JSON format\n\n📈 **Forecast Intent:**\nPredicts next 3 months, identifies trends, and gives a confidence level\n\n---\n\n### 🧠 `OpenAI GPT-4 Model`\n\n**Type:** OpenAI Node\n**Purpose:**\nHandles the natural language generation based on the supplied prompt.\n\n🧾 **Configuration:**\n\n* Model: `gpt-4` or `gpt-4-turbo`\n* Temperature: `0.2` (more deterministic)\n* Max Tokens: `1000`\n\n---\n\n### 📄 `Extract Forecast Output`\n\n**Type:** Structured Output Parser\n**Purpose:**\nParses the GPT response into usable JSON format.\n\n📦 **Expected Output:**\n\n```json\n{\n  \"forecast\": {\n    \"June\": \"$15,000.00\",\n    \"July\": \"$16,500.00\",\n    \"August\": \"$17,200.00\"\n  },\n  \"trend\": \"Increasing\",\n  \"confidence\": \"High\",\n  \"insights\": \"Sales show strong momentum...\"\n}\n```\n\n---\n\n### 🌲 `Store Context in Pinecone` *(optional)*\n\n**Type:** Vector Store\n**Purpose:**\nIndexes past data for retrieval-based prompting (RAG). Useful for long-term memory.\n\n---\n\n### 🧬 `Generate Embeddings` *(optional)*\n\n**Type:** Embeddings Node\n**Purpose:**\nConverts text into vector format before inserting into Pinecone.\n\n---\n\n## 3️⃣ **📦 Storage & Reporting**\n\n**Nodes:**\n\n* 🟩 `Save Forecast to Supabase`\n* 📊 `Log Forecast in Google Sheets`\n\n---\n\n### 🟩 `Save Forecast to Supabase`\n\n**Type:** Supabase Node\n**Purpose:**\nStores all forecast results for analytics, versioning, or historical comparisons.\n\n🛢️ **Table:** `forecasts`\n🧾 **Columns Example:**\n\n| timestamp  | raw\\_data | forecast\\_data |\n| ---------- | --------- | -------------- |\n| 2025-05-29 | {...}     | {...}          |\n\n---\n\n### 📊 `Log Forecast in Google Sheets`\n\n**Type:** Google Sheets Node\n**Purpose:**\nPushes structured data into a visual format for reporting dashboards or human review.\n\n📋 **Column Format:**\n\n| Date       | Forecast (USD) | Trend      | Confidence | Insights                   |\n| ---------- | -------------- | ---------- | ---------- | -------------------------- |\n| 2025-05-29 | \\$15,000.00    | Increasing | High       | Sales rising at 10% weekly |\n\n---\n\n## ✅ Summary Flow\n\n```txt\n🔁 Sales Data (Stripe) \n → 🧠 Forecast Agent (OpenAI) \n → 📦 Stored in Supabase \n → 📊 Reported in Google Sheets\n```\n"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {
    "Fetch Stripe Charges": [
      {
        "json": {
          "id": "ch_1NxXy2LzPp3ZhRAbCD123456",
          "amount": 3500,
          "object": "charge",
          "status": "succeeded",
          "created": 1716940800,
          "currency": "usd",
          "customer": {
            "id": "cus_N8U1xX5TVgB1vW",
            "name": "Jane Doe",
            "email": "jane.doe@example.com"
          },
          "description": "Pro plan subscription",
          "amount_captured": 3500,
          "amount_refunded": 0,
          "payment_method_details": {
            "card": {
              "brand": "visa",
              "last4": "4242"
            },
            "type": "card"
          }
        }
      },
      {
        "json": {
          "id": "ch_1NxXy3LzPp3ZhRAbCD654321",
          "amount": 1299,
          "object": "charge",
          "status": "succeeded",
          "created": 1717027200,
          "currency": "usd",
          "customer": {
            "id": "cus_N8U9YT5TWzA7LM",
            "name": "John Smith",
            "email": "john.smith@example.com"
          },
          "description": "Add-on purchase",
          "amount_captured": 1299,
          "amount_refunded": 0,
          "payment_method_details": {
            "card": {
              "brand": "mastercard",
              "last4": "5555"
            },
            "type": "card"
          }
        }
      }
    ]
  },
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "56196260-ac1a-4ef1-87c1-d5a8e1eb438f",
  "connections": {
    "fb33581a-9f41-49d7-a722-a68dfe5bc265": {
      "main": [
        [
          {
            "node": "d3458681-2654-4e22-8b2d-1711b60ed592",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c115eb0c-6877-46db-bf03-55e48527dbc5": {
      "main": [
        [
          {
            "node": "fb33581a-9f41-49d7-a722-a68dfe5bc265",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d3458681-2654-4e22-8b2d-1711b60ed592": {
      "main": [
        [
          {
            "node": "325e4952-868c-460a-aa78-2e718477cc78",
            "type": "main",
            "index": 0
          },
          {
            "node": "9fd6efab-edc6-49be-9516-f2d36e1995b2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "7d370700-89d9-4163-8070-4a0c643531ca": {
      "ai_embedding": [
        [
          {
            "node": "bb75cafb-9dad-4952-89af-0658c4d88aa4",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "d80c3670-e8c8-43ee-ba12-2e0e18b99862": {
      "ai_languageModel": [
        [
          {
            "node": "d3458681-2654-4e22-8b2d-1711b60ed592",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "81de1ecf-75de-44fd-9e62-c381e907c1e1": {
      "main": [
        [
          {
            "node": "9ce2e0e4-8784-4ed9-9499-b5f54241d04e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "9ce2e0e4-8784-4ed9-9499-b5f54241d04e": {
      "main": [
        [
          {
            "node": "c115eb0c-6877-46db-bf03-55e48527dbc5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "bb75cafb-9dad-4952-89af-0658c4d88aa4": {
      "ai_tool": [
        [
          {
            "node": "d3458681-2654-4e22-8b2d-1711b60ed592",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "b946638e-ba68-4d73-816e-00f3a63d138f": {
      "ai_outputParser": [
        [
          {
            "node": "d3458681-2654-4e22-8b2d-1711b60ed592",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    }
  }
}
자주 묻는 질문

이 워크플로우를 어떻게 사용하나요?

위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.

이 워크플로우는 어떤 시나리오에 적합한가요?

고급 - 인공지능, IT 운영

유료인가요?

이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.

워크플로우 정보
난이도
고급
노드 수16
카테고리2
노드 유형12
난이도 설명

고급 사용자를 위한 16+개 노드의 복잡한 워크플로우

저자
Yaron Been

Yaron Been

@yaron-nofluff

Building AI Agents and Automations | Growth Marketer | Entrepreneur | Book Author & Podcast Host If you need any help with Automations, feel free to reach out via linkedin: https://www.linkedin.com/in/yaronbeen/ And check out my Youtube channel: https://www.youtube.com/@YaronBeen/videos

외부 링크
n8n.io에서 보기

이 워크플로우 공유

카테고리

카테고리: 34