OpenRouter를 사용하는 자동화 AI 라우팅
중급
이것은Engineering, Building Blocks, AI, IT Ops분야의자동화 워크플로우로, 7개의 노드를 포함합니다.주로 Agent, ChatTrigger, LmChatOpenRouter, OutputParserStructured 등의 노드를 사용하며인공지능 기술을 결합하여 스마트 자동화를 구현합니다. OpenRouter를 통해 쿼리 최적화 동적 AI 모델 라우팅
사전 요구사항
- •AI 서비스 API Key(예: OpenAI, Anthropic 등)
워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
"id": "uNLWQ7BSozpoehpU",
"meta": {
"instanceId": "a4bfc93e975ca233ac45ed7c9227d84cf5a2329310525917adaf3312e10d5462",
"templateCredsSetupCompleted": true
},
"name": "Automated AI Routing with OpenRouter",
"tags": [],
"nodes": [
{
"id": "25903a04-24d2-41f9-bf34-5d6234e642e5",
"name": "채팅 메시지 수신 시",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-180,
-180
],
"webhookId": "a0032740-26d8-491b-93f9-2250906d0e17",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "fabffdee-3c1e-47db-a4e9-f6473a6e9257",
"name": "OpenRouter Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
"position": [
0,
40
],
"parameters": {
"options": {}
},
"credentials": {
"openRouterApi": {
"id": "pb06rfB4xmxzVe3Q",
"name": "OpenRouter"
}
},
"typeVersion": 1
},
{
"id": "c53fe672-92cb-4d88-b4f6-f413fb00ad6a",
"name": "Structured Output Parser",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
220,
40
],
"parameters": {
"schemaType": "manual",
"inputSchema": "{\n\t\"type\": \"object\",\n\t\"properties\": {\n\t\t\"prompt\": {\n\t\t\t\"type\": \"string\"\n\t\t},\n\t\t\"model\": {\n\t\t\t\"type\": \"string\"\n\t\t}\n\t}\n}"
},
"typeVersion": 1.2
},
{
"id": "d60a9d61-c611-4813-bf85-e8f8faaa21b6",
"name": "OpenRouter Chat Model1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
"position": [
380,
40
],
"parameters": {
"model": "={{ $json.output.model }}",
"options": {}
},
"credentials": {
"openRouterApi": {
"id": "pb06rfB4xmxzVe3Q",
"name": "OpenRouter"
}
},
"typeVersion": 1
},
{
"id": "ef9ceacb-55e4-4795-aa18-976997ec3717",
"name": "스티키 노트",
"type": "n8n-nodes-base.stickyNote",
"position": [
-180,
-420
],
"parameters": {
"width": 840,
"height": 180,
"content": "## Dynamic Model Selector for Optimal AI Responses\n\nThe **Agent Decisioner** is a dynamic, AI-powered routing system that automatically selects the most appropriate large language model (LLM) to respond to a user's query based on the query’s content and purpose.\n\nThis workflow ensures **dynamic, optimized AI responses** by intelligently routing queries to the best-suited model."
},
"typeVersion": 1
},
{
"id": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
"name": "라우팅 에이전트",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
40,
-180
],
"parameters": {
"options": {
"systemMessage": "=You are a **Routing Agent**.\n\nYour task is to analyze user queries and determine the most appropriate model to handle each specific use case.\n\n## Available Models\n\nYou have access to the following models:\n\n1. **perplexity/sonar**\n2. **openai/gpt-4o-mini**\n3. **anthropic/claude-3.7-sonnet**\n4. **meta-llama/llama-3-70b-instruct**\n5. **google/gemini-2.5-pro-preview**\n6. **qwen/qwen-qwq-32b**\n7. **openai/codex-mini**\n8. **openai/o1-pro**\n\n## Model Strengths\n\n### 1. perplexity/sonar\n- Built-in web search capability\n- Provides citations and customizable sources\n- Ideal for retrieving live, up-to-date information from the web\n\n### 2. openai/gpt-4o-mini\n- Cost-efficient language model optimized for advanced reasoning tasks\n- Excels in science and mathematics\n- Best suited for problems requiring careful, well-thought-out responses involving multiple variables or connections\n\n### 3. anthropic/claude-3.7-sonnet\n- High proficiency in coding tasks, scoring ~94% on SWE-Bench Verified\n- Enhances data science expertise by navigating unstructured data and utilizing multiple tools for insights\n- Handles very long documents and maintains coherence over extended conversations or analyses\n- Performs well in creative writing tasks such as storytelling, dialogue generation, and summarization\n- Tends to produce responses that are more aligned with safety and ethical guidelines\n\n### 4. meta-llama/llama-3-70b-instruct\n- Strong performance in coding and reasoning tasks\n- Suitable for complex programming and technical problem-solving\n- Supports long context windows, making it ideal for extended analyses\n\n### 5. google/gemini-2.5-pro-preview\n- Advanced multimodal capabilities, handling both text and images\n- Excels in tasks requiring integration of visual and textual information\n- Ideal for complex problem-solving involving diverse data types\n\n### 6. qwen/qwen-qwq-32b\n- Specialized in reasoning and problem-solving tasks\n- Effective in handling logical puzzles and complex analytical queries\n\n### 7. openai/codex-mini\n- Optimized for code generation and completion tasks\n- Suitable for lightweight coding tasks and quick code snippets\n\n### 8. openai/o1-pro\n- Designed for complex reasoning with enhanced computational resources\n- Performs well in STEM-related tasks, including physics, chemistry, and biology\n- Capable of handling large context windows, making it suitable for in-depth analyses\n\n## Output Format\n\nYour output must always be a valid JSON object in the following format:\n\n```json\n{\n \"prompt\": \"user query goes here\",\n \"model\": \"selected-model-name\"\n}\n```\n\n- The **\"prompt\"** field should contain the exact query to be sent to the selected model.\n- The **\"model\"** field should contain the model name (one of: perplexity/sonar, openai/gpt-4o-mini, anthropic/claude-3.7-sonnet, meta-llama/llama-3-70b-instruct, google/gemini-2.5-pro-preview, qwen/qwen-qwq-32b, openai/codex-mini, openai/o1-pro).\n\n**Important:** Only return the JSON object. Do not include any explanations or additional text."
},
"hasOutputParser": true
},
"typeVersion": 1.9
},
{
"id": "94c49c22-9697-4230-ba35-5159041cfdc7",
"name": "AI 에이전트",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
400,
-180
],
"parameters": {
"text": "={{ $json.output.prompt }}",
"options": {},
"promptType": "define"
},
"typeVersion": 1.9
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "f1562281-3e44-4f7d-a585-90c54a65e888",
"connections": {
"4d688ad7-b463-4e72-9b79-4b9142f022d2": {
"main": [
[
{
"node": "94c49c22-9697-4230-ba35-5159041cfdc7",
"type": "main",
"index": 0
}
]
]
},
"fabffdee-3c1e-47db-a4e9-f6473a6e9257": {
"ai_languageModel": [
[
{
"node": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"d60a9d61-c611-4813-bf85-e8f8faaa21b6": {
"ai_languageModel": [
[
{
"node": "94c49c22-9697-4230-ba35-5159041cfdc7",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"c53fe672-92cb-4d88-b4f6-f413fb00ad6a": {
"ai_outputParser": [
[
{
"node": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"25903a04-24d2-41f9-bf34-5d6234e642e5": {
"main": [
[
{
"node": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
"type": "main",
"index": 0
}
]
]
}
}
}자주 묻는 질문
이 워크플로우를 어떻게 사용하나요?
위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.
이 워크플로우는 어떤 시나리오에 적합한가요?
중급 - 엔지니어링, 빌딩 블록, 인공지능, IT 운영
유료인가요?
이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.
관련 워크플로우 추천
프록시 AI Anthropic Opus 4 및 Sonnet 4
Anthropic AI 에이전트: Claude Sonnet 4 및 Opus 4, 사고 및 웹 검색 도구 보유
Agent
Http Request Tool
Tool Think
+
Agent
Http Request Tool
Tool Think
11 노드Davide
엔지니어링
ozki: OpenAI CSV 분석
OpenAI 기반 데이터 에이전트를 사용한 Google Sheets 데이터 분석
Agent
Google Sheets Tool
Chat Trigger
+
Agent
Google Sheets Tool
Chat Trigger
6 노드ozkary
엔지니어링
Claude 3.7 Sonnet AI 대리인(네트워크 검색 및 사고 기능)
Anthropic 네트워크 검색 및 사고 기능을 갖춘 Claude 3.7 Sonnet AI 채팅 로봇 대리인
Agent
Http Request Tool
Tool Think
+
Agent
Http Request Tool
Tool Think
7 노드Davide
빌딩 블록
데이터 분석사 Agent v3
用于电子表格의AI데이터분석어시스턴트,基于NocoDB平台
Set
Noco Db Tool
Http Request
+
Set
Noco Db Tool
Http Request
10 노드Derek Cheung
엔지니어링
매우 간단한 인간 개입 시스템을 갖춘 AI 이메일 및 IMAP
一个非常简单의"人工介入循环"이메일响应系统,사용人工스마트및IMAP协议
If
Set
Markdown
+
If
Set
Markdown
16 노드Davide
빌딩 블록
AI 스마트 어시스턴트: Supabase 스토리지 및 Google Drive 파일과 대화
AI스마트어시스턴트:与Supabase存储및Google Drive文件对话
If
Set
Wait
+
If
Set
Wait
62 노드Mark Shcherbakov
엔지니어링
워크플로우 정보
난이도
중급
노드 수7
카테고리4
노드 유형5
저자
Davide
@n3witaliaFull-stack Web Developer based in Italy specialising in Marketing & AI-powered automations. For business enquiries, send me an email at info@n3w.it or add me on Linkedin.com/in/davideboizza
외부 링크
n8n.io에서 보기 →
이 워크플로우 공유