8
n8n 한국어amn8n.com

Outlook Excel 첨부 파일에서 구매 주문서 양식 제출 및 AI 자동화

고급

이것은AI분야의자동화 워크플로우로, 22개의 노드를 포함합니다.주로 If, Set, Code, ExtractFromFile, MicrosoftOutlook 등의 노드를 사용하며인공지능 기술을 결합하여 스마트 자동화를 구현합니다. Outlook Excel 첨부 파일에서 구매 주문서 양식 제출 및 AI 자동화

사전 요구사항
  • OpenAI API Key

카테고리

워크플로우 미리보기
노드 연결 관계를 시각적으로 표시하며, 확대/축소 및 이동을 지원합니다
워크플로우 내보내기
다음 JSON 구성을 복사하여 n8n에 가져오면 이 워크플로우를 사용할 수 있습니다
{
  "meta": {
    "instanceId": "408f9fb9940c3cb18ffdef0e0150fe342d6e655c3a9fac21f0f644e8bedabcd9",
    "templateCredsSetupCompleted": true
  },
  "nodes": [
    {
      "id": "b87cc222-82ec-4b46-9573-68f41d096969",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        640,
        620
      ],
      "parameters": {
        "color": 7,
        "width": 740,
        "height": 680,
        "content": "## 2. Manually Convert XLSX to Markdown\n[Learn more about the Extract From File node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.extractfromfile/)\n\nToday's LLMs cannot parse Excel files directly so the best we can do is to convert the spreadsheet into a format that they can, namely markdown. This conversion is also a good solution for excels which aren't really datasheets - the cells are used like layout elements - which is still common for invoices and purchase orders.\n\nTo perform the conversion, we can use the 'Extract from File' node to get the each row from the xlsx and then iterate and concatenate to form our markdown table using the code node."
      },
      "typeVersion": 1
    },
    {
      "id": "c4c55042-02c8-4364-ae7e-d1ec5a75437a",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1400,
        620
      ],
      "parameters": {
        "color": 7,
        "width": 640,
        "height": 680,
        "content": "## 3. Extract Purchase Order Details using AI\n[Learn more about the Information Extractor](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.information-extractor)\n\nData entry is probably the number one reason as to why we need AI/LLMs. This time consuming and menial task can be completed in seconds and with a high degree of accuracy. Here, we ask the AI to extract each event with the term dates to a list of events using structured output."
      },
      "typeVersion": 1
    },
    {
      "id": "b9530f93-464b-4116-add7-da218fe8eb12",
      "name": "Sticky Note5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -700,
        -80
      ],
      "parameters": {
        "width": 460,
        "height": 1400,
        "content": "## Try it out!\n### This n8n template imports purchase order submissions from Outlook and converts attached purchase order form in XLSX format into structured output.\n\nData entry jobs with user-submitted XLSX forms is a time consuming, incredibly mundane but necessary tasks which in likelihood are inherited and critical to business operation.\n\nWhile we could dream of system overhauls and modernisation, the fact is that change is hard. There is another way however -  using n8n and AI!\n\n### How it works\n* An Outlook trigger is used to watch for incoming purchase order forms submitted via a shared inbox.\n* The email attachment for the submission is a form in xlsx format - like this one https://1drv.ms/x/c/8f1f7dda12b7a145/ETWH8dKwgZ1OiVz7ISUWYf8BwiyihBjXPXEbCYkVi8XDyw?e=WWU2eR - which is imported into the workflow.\n* The 'Extract from File' node is used with the 'code' node to convert the xlsx file to markdown. This is so our LLM can understand it.\n* The Information Extractor node is used to read and extract the relevant purchase order details and line items from the form.\n* A simple validation step is used to check for common errors such as missing PO number or the amounts not matching up. A notification is automated to reply to the buyer if so.\n* Once validation passes, a confirmation is sent to the buyer and the purchase order structured output can be sent along to internal systems.\n\n### How to use\n* This template only works if you're expecting and receiving forms in XLSX format. These can be invoices, request forms as well as purchase order forms.\n* Update the Outlook nodes with your email or other emails as required.\n* What's next? I've omitted the last steps to send to an ERP or accounting system as this is dependent on your org.\n\n### Requirements\n* Outlook for Emails\n  * Check out how to setup credentials here: https://docs.n8n.io/integrations/builtin/credentials/microsoft/\n* OpenAI for LLM document understanding and extraction.\n\n### Customising the workflow\n* This template should work for other Excel files. Some will be more complicated than others so experiment with different parsers and extraction tools and strategies.\n* Customise the Information Extractor Schema to pull out the specific data you need. For example, capture any notes or comments given by the buyer.\n\n### Need Help?\nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!\n\nHappy Hacking!"
      },
      "typeVersion": 1
    },
    {
      "id": "f5a2d1e7-f73b-4bfa-8e02-f30db275bbcc",
      "name": "구매 주문서 세부 정보 추출",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        1500,
        920
      ],
      "parameters": {
        "text": "={{ $json.table }}",
        "options": {
          "systemPromptTemplate": "Capture the values as seen. Do not convert dates."
        },
        "schemaType": "manual",
        "inputSchema": "{\n  \"type\": \"object\",\n  \"properties\": {\n    \"purchase_order_number\": { \"type\": \"string\" },\n    \"purchase_order_date\": { \"type\": \"string\" },\n    \"purchase_order_total\": { \"type\": \"number\" },\n    \"vendor_name\": { \"type\": \"string\" },\n    \"vendor_address\": { \"type\": \"string\" },\n    \"vendor_contact\": { \"type\": \"string\" },\n    \"delivery_contact\": { \"type\": \"string\" },\n    \"delivery_address\": { \"type\": \"string\" },\n    \"delivery_method\": { \"type\": \"string\" },\n    \"items\": {\n      \"type\": \"array\",\n      \"items\": {\n        \"type\": \"object\",\n        \"properties\": {\n          \"description\": { \"type\": \"string\" },\n          \"part_number\": { \"type\": \"string\" },\n          \"quantity\": { \"type\": \"number\" },\n          \"unit\": { \"type\": \"number\" },\n          \"unit_price\": { \"type\": \"number\" }\n        }\n      }\n    }\n  }\n}"
      },
      "typeVersion": 1
    },
    {
      "id": "0ce545f0-8147-4ad2-bb9e-14ef0b0c26ef",
      "name": "Excel 문서인가요?",
      "type": "n8n-nodes-base.if",
      "position": [
        760,
        1020
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "f723ab0a-8f2d-4501-8273-fd6455c57cdd",
              "operator": {
                "name": "filter.operator.equals",
                "type": "string",
                "operation": "equals"
              },
              "leftValue": "={{ $binary.data.mimeType }}",
              "rightValue": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "ccbd9531-66be-4e07-8b73-faf996622f9f",
      "name": "Sticky Note7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -220,
        460
      ],
      "parameters": {
        "color": 5,
        "width": 340,
        "height": 140,
        "content": "### PURCHASE ORDER EXAMPLE\nThis is the purchase order XLSX which is used an example for this template.\nhttps://1drv.ms/x/c/8f1f7dda12b7a145/ETWH8dKwgZ1OiVz7ISUWYf8BwiyihBjXPXEbCYkVi8XDyw?e=WWU2eR"
      },
      "typeVersion": 1
    },
    {
      "id": "ef8b00eb-dba6-47dd-a825-1aa5c85ee215",
      "name": "검사 실행",
      "type": "n8n-nodes-base.set",
      "position": [
        2160,
        940
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "049c7aca-7663-4eed-93b4-9eec3760c058",
              "name": "has_po_number",
              "type": "boolean",
              "value": "={{ Boolean($json.output.purchase_order_number) }}"
            },
            {
              "id": "94d2224a-cf81-4a42-acd0-de5276a5e493",
              "name": "has_valid_po_date",
              "type": "boolean",
              "value": "={{ $json.output.purchase_order_date.toDateTime() < $now.plus({ 'day': 1 }) }}"
            },
            {
              "id": "a8f69605-dad6-4ec2-a22f-d13ff99e27cd",
              "name": "has_items",
              "type": "boolean",
              "value": "={{ $json.output.items.length > 0 }}"
            },
            {
              "id": "c11db99e-9cc2-40b7-b3a5-f3c65f88dc13",
              "name": "is_math_correct",
              "type": "boolean",
              "value": "={{\n$json.output.items.map(item => item.unit_price * item.quantity).sum().round(2) === $json.output.purchase_order_total.round(2) }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "801848cc-558c-4a30-aab5-eb403564b68f",
      "name": "유효한 구매 주문서인가요?",
      "type": "n8n-nodes-base.if",
      "position": [
        2360,
        940
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "11fa8087-7809-4bc9-9fbe-32bfd35821a6",
              "operator": {
                "type": "boolean",
                "operation": "true",
                "singleValue": true
              },
              "leftValue": "={{ $json.has_po_number }}",
              "rightValue": ""
            },
            {
              "id": "c45ae85a-e060-4416-aa2c-daf58db8ba0e",
              "operator": {
                "type": "boolean",
                "operation": "true",
                "singleValue": true
              },
              "leftValue": "={{ $json.has_valid_po_date }}",
              "rightValue": ""
            },
            {
              "id": "d0ae9518-2f4b-43fb-87b1-7108a6a75424",
              "operator": {
                "type": "boolean",
                "operation": "true",
                "singleValue": true
              },
              "leftValue": "={{ $json.has_items }}",
              "rightValue": ""
            },
            {
              "id": "eed09f78-ce1a-4e09-8940-febcf7e41078",
              "operator": {
                "type": "boolean",
                "operation": "true",
                "singleValue": true
              },
              "leftValue": "={{ $json.is_math_correct }}",
              "rightValue": ""
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "7c7dd7a0-45fe-4549-8341-3b3fd18e1725",
      "name": "파일에서 추출",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        980,
        920
      ],
      "parameters": {
        "options": {
          "rawData": true,
          "headerRow": false,
          "includeEmptyCells": true
        },
        "operation": "xlsx"
      },
      "typeVersion": 1
    },
    {
      "id": "dfb6b00f-fe50-42d6-8597-8fdcb562714b",
      "name": "XLSX를 마크다운 테이블로 변환",
      "type": "n8n-nodes-base.code",
      "position": [
        1180,
        920
      ],
      "parameters": {
        "jsCode": "const rows = $input.all().map(item => item.json.row);\nconst maxLength = Math.max(...rows.map(row => row.length));\n\nconst table = [\n  '|' + rows[0].join('|') + '|',\n  '|' + Array(maxLength).fill(0).map(_ => '-').join('|') + '|',\n  rows.slice(1, rows.length)\n    .filter(row => row.some(Boolean))\n    .map(row =>\n      '|' + row.join('|') + '|'\n    ).join('\\n')\n].join('\\n')\n\nreturn { table }"
      },
      "typeVersion": 2
    },
    {
      "id": "1a3de516-1d21-4664-b2e3-8c8d6ec90ef2",
      "name": "OpenAI 채팅 모델",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        1600,
        1080
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "1a29236f-5eaa-4a38-a0a1-6e19abd77d2c",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2060,
        620
      ],
      "parameters": {
        "color": 7,
        "width": 940,
        "height": 680,
        "content": "## 4. Use Simple Validation to Save Time and Effort\n[Learn more about the Edit Fields node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.set)\n\nWith our extracted output, we can run simple validation checks to save on admin time. Common errors such as missing purchase order numbers or miscalculated cost amounts are easy to detect and a quick response can be given. Once validation passes, it's up to you how you use the extracted output next."
      },
      "typeVersion": 1
    },
    {
      "id": "79a39a03-5f71-4021-bcfd-06edbc285e8a",
      "name": "잘못된 형식 답장",
      "type": "n8n-nodes-base.microsoftOutlook",
      "position": [
        980,
        1120
      ],
      "webhookId": "9464583e-9505-49ec-865e-58aa1ab3c2ed",
      "parameters": {
        "message": "PO rejected due to invalid file format. Please try again with XLSX.",
        "options": {},
        "messageId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $('Outlook Trigger').first().json.id }}"
        },
        "operation": "reply",
        "additionalFields": {},
        "replyToSenderOnly": true
      },
      "credentials": {
        "microsoftOutlookOAuth2Api": {
          "id": "EWg6sbhPKcM5y3Mr",
          "name": "Microsoft Outlook account"
        }
      },
      "typeVersion": 2
    },
    {
      "id": "ec973438-4d6c-4d2e-8702-1d195f514528",
      "name": "Outlook 트리거",
      "type": "n8n-nodes-base.microsoftOutlookTrigger",
      "position": [
        -120,
        920
      ],
      "parameters": {
        "fields": [
          "body",
          "categories",
          "conversationId",
          "from",
          "hasAttachments",
          "internetMessageId",
          "sender",
          "subject",
          "toRecipients",
          "receivedDateTime",
          "webLink"
        ],
        "output": "fields",
        "filters": {
          "hasAttachments": true,
          "foldersToInclude": []
        },
        "options": {
          "downloadAttachments": true
        },
        "pollTimes": {
          "item": [
            {
              "mode": "everyHour"
            }
          ]
        }
      },
      "credentials": {
        "microsoftOutlookOAuth2Api": {
          "id": "EWg6sbhPKcM5y3Mr",
          "name": "Microsoft Outlook account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "fcb173ce-7dad-497a-9376-9650c2a24a84",
      "name": "거절 답장",
      "type": "n8n-nodes-base.microsoftOutlook",
      "position": [
        2580,
        1040
      ],
      "webhookId": "9464583e-9505-49ec-865e-58aa1ab3c2ed",
      "parameters": {
        "message": "=PO Rejected due to the following errors:\n{{\n[\n  !$json.has_po_number ? '* PO number was not provided' : '',\n  !$json.has_valid_po_date ? '* PO date was missing or invalid' : '',\n  !$json.has_items ? '* No line items detected' : '',\n  !$json.is_math_correct ? '* Line items prices do not match up to PO total' : ''\n]\n  .compact()\n  .join('\\n')\n}}",
        "options": {},
        "messageId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $('Outlook Trigger').first().json.id }}"
        },
        "operation": "reply",
        "additionalFields": {},
        "replyToSenderOnly": true
      },
      "credentials": {
        "microsoftOutlookOAuth2Api": {
          "id": "EWg6sbhPKcM5y3Mr",
          "name": "Microsoft Outlook account"
        }
      },
      "typeVersion": 2
    },
    {
      "id": "64ced193-6b12-4ee9-b1e2-735040648051",
      "name": "승인 답장",
      "type": "n8n-nodes-base.microsoftOutlook",
      "position": [
        2580,
        820
      ],
      "webhookId": "9464583e-9505-49ec-865e-58aa1ab3c2ed",
      "parameters": {
        "message": "=Thank you for the purchase order.\nThis is an automated reply.",
        "options": {},
        "messageId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $('Outlook Trigger').first().json.id }}"
        },
        "operation": "reply",
        "additionalFields": {},
        "replyToSenderOnly": true
      },
      "credentials": {
        "microsoftOutlookOAuth2Api": {
          "id": "EWg6sbhPKcM5y3Mr",
          "name": "Microsoft Outlook account"
        }
      },
      "typeVersion": 2
    },
    {
      "id": "7bfe0e44-cd5d-4290-ba2e-0064c95bc4e2",
      "name": "구매 주문서로 작업 수행",
      "type": "n8n-nodes-base.noOp",
      "position": [
        2800,
        940
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "6f517f2f-6072-46a2-8a9d-cca4e958d601",
      "name": "Excel 날짜 수정",
      "type": "n8n-nodes-base.set",
      "position": [
        1840,
        920
      ],
      "parameters": {
        "mode": "raw",
        "options": {},
        "jsonOutput": "={{\n{\n  output: {\n    ...$json.output,\n    purchase_order_date: $json.output.purchase_order_date\n      ? new Date((new Date(1900, 0, 1)).getTime() + (Number($json.output.purchase_order_date) - 2) * (24 * 60 * 60 * 1000))\n      : $json.output.purchase_order_date\n  }\n}\n}}"
      },
      "typeVersion": 3.4
    },
    {
      "id": "f3a31b63-ebcb-4d93-8c5a-f626897b7d68",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -220,
        620
      ],
      "parameters": {
        "color": 7,
        "width": 840,
        "height": 680,
        "content": "## 1. Wait For Incoming Purchase Orders\n[Read more about the Outlook trigger](https://docs.n8n.io/integrations/builtin/trigger-nodes/n8n-nodes-base.microsoftoutlooktrigger)\n\nOur template starts by watching for new emails to a shared inbox (eg. \"purchase-orders@example.com\") using the Outlook Trigger node. Our goal is to identify and capture buyer purchase orders so that we can automating validate and use AI to reduce the data entry time and cost at scale.\n\nWe can also use the Text Classifier node to validate intent. This ensures we catch valid submissions are not just queries about purchase-orders or replies."
      },
      "typeVersion": 1
    },
    {
      "id": "bb395dfc-2831-4e57-90c9-62f13f84302e",
      "name": "구매 주문서를 제출하나요?",
      "type": "@n8n/n8n-nodes-langchain.textClassifier",
      "position": [
        80,
        920
      ],
      "parameters": {
        "options": {
          "fallback": "other"
        },
        "inputText": "=from: {{ $json.from.emailAddress.name }} <{{ $json.from.emailAddress.address }}>\nsubject: {{ $json.subject }}\nmessage:\n{{ $json.body.content }}",
        "categories": {
          "categories": [
            {
              "category": "is_purchase_order",
              "description": "The message's intent is to submit a purchase order"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "e52ec2e2-8be5-40ab-b1f8-8d7c0b161e1a",
      "name": "아무 작업도 안 함",
      "type": "n8n-nodes-base.noOp",
      "position": [
        420,
        1040
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "5ca6be4e-bc33-42d7-91bc-d30f7ccfdd25",
      "name": "OpenAI 채팅 모델1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        180,
        1080
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini",
          "cachedResultName": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    }
  ],
  "pinData": {},
  "connections": {
    "ef8b00eb-dba6-47dd-a825-1aa5c85ee215": {
      "main": [
        [
          {
            "node": "801848cc-558c-4a30-aab5-eb403564b68f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "64ced193-6b12-4ee9-b1e2-735040648051": {
      "main": [
        [
          {
            "node": "7bfe0e44-cd5d-4290-ba2e-0064c95bc4e2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "6f517f2f-6072-46a2-8a9d-cca4e958d601": {
      "main": [
        [
          {
            "node": "ef8b00eb-dba6-47dd-a825-1aa5c85ee215",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "ec973438-4d6c-4d2e-8702-1d195f514528": {
      "main": [
        [
          {
            "node": "bb395dfc-2831-4e57-90c9-62f13f84302e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "7c7dd7a0-45fe-4549-8341-3b3fd18e1725": {
      "main": [
        [
          {
            "node": "dfb6b00f-fe50-42d6-8597-8fdcb562714b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1a3de516-1d21-4664-b2e3-8c8d6ec90ef2": {
      "ai_languageModel": [
        [
          {
            "node": "f5a2d1e7-f73b-4bfa-8e02-f30db275bbcc",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "0ce545f0-8147-4ad2-bb9e-14ef0b0c26ef": {
      "main": [
        [
          {
            "node": "7c7dd7a0-45fe-4549-8341-3b3fd18e1725",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "79a39a03-5f71-4021-bcfd-06edbc285e8a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5ca6be4e-bc33-42d7-91bc-d30f7ccfdd25": {
      "ai_languageModel": [
        [
          {
            "node": "bb395dfc-2831-4e57-90c9-62f13f84302e",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "dfb6b00f-fe50-42d6-8597-8fdcb562714b": {
      "main": [
        [
          {
            "node": "f5a2d1e7-f73b-4bfa-8e02-f30db275bbcc",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "801848cc-558c-4a30-aab5-eb403564b68f": {
      "main": [
        [
          {
            "node": "64ced193-6b12-4ee9-b1e2-735040648051",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "fcb173ce-7dad-497a-9376-9650c2a24a84",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f5a2d1e7-f73b-4bfa-8e02-f30db275bbcc": {
      "main": [
        [
          {
            "node": "6f517f2f-6072-46a2-8a9d-cca4e958d601",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "bb395dfc-2831-4e57-90c9-62f13f84302e": {
      "main": [
        [
          {
            "node": "0ce545f0-8147-4ad2-bb9e-14ef0b0c26ef",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "e52ec2e2-8be5-40ab-b1f8-8d7c0b161e1a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
자주 묻는 질문

이 워크플로우를 어떻게 사용하나요?

위의 JSON 구성 코드를 복사하여 n8n 인스턴스에서 새 워크플로우를 생성하고 "JSON에서 가져오기"를 선택한 후, 구성을 붙여넣고 필요에 따라 인증 설정을 수정하세요.

이 워크플로우는 어떤 시나리오에 적합한가요?

고급 - 인공지능

유료인가요?

이 워크플로우는 완전히 무료이며 직접 가져와 사용할 수 있습니다. 다만, 워크플로우에서 사용하는 타사 서비스(예: OpenAI API)는 사용자 직접 비용을 지불해야 할 수 있습니다.

워크플로우 정보
난이도
고급
노드 수22
카테고리1
노드 유형11
난이도 설명

고급 사용자를 위한 16+개 노드의 복잡한 워크플로우

저자
Jimleuk

Jimleuk

@jimleuk

Freelance consultant based in the UK specialising in AI-powered automations. I work with select clients tackling their most challenging projects. For business enquiries, send me an email at hello@jimle.uk LinkedIn: https://www.linkedin.com/in/jimleuk/ X/Twitter: https://x.com/jimle_uk

외부 링크
n8n.io에서 보기

이 워크플로우 공유

카테고리

카테고리: 34