私のワークフロー 5
上級
これは自動化ワークフローで、19個のノードを含みます。主にCode, Merge, Airtable, HttpRequest, ManualTriggerなどのノードを使用。 GPT-4、SendGrid、Airtableを使用してメールパフォーマンスを分析し、マーケティングキャンペーンを最適化
前提条件
- •Airtable API Key
- •ターゲットAPIの認証情報が必要な場合あり
- •OpenAI API Key
カテゴリー
-
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"meta": {
"instanceId": "42b2652ebb0a87755df4710a5630695eec8e35cb0ce04a63b0e25751b1f044f1"
},
"name": "My workflow 5",
"tags": [],
"nodes": [
{
"id": "05a392cc-4f92-4716-8738-6a0fbd45e3ed",
"name": "ワークフロー実行時",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-16,
384
],
"parameters": {},
"typeVersion": 1
},
{
"id": "1da7c095-0587-46fa-ae74-558f9cf7d0e1",
"name": "Sendgrid データ取得",
"type": "n8n-nodes-base.httpRequest",
"position": [
176,
496
],
"parameters": {
"url": "https://api.sendgrid.com/v3/stats",
"options": {},
"sendQuery": true,
"sendHeaders": true,
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth",
"queryParameters": {
"parameters": [
{
"name": "start_date",
"value": "={{ $now.minus(7, 'days').format('yyyy-MM-dd') }}"
},
{
"name": "end_date",
"value": "={{ $now.format('yyyy-MM-dd') }}"
}
]
},
"headerParameters": {
"parameters": [
{
"name": "Content-Type",
"value": "application/json"
}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "KB5CcNJcpZPU6DRn",
"name": "Sendgrid"
}
},
"typeVersion": 4.2
},
{
"id": "abeda94c-de1e-492d-b63a-ad01ad1f7ab2",
"name": "レコード更新",
"type": "n8n-nodes-base.airtable",
"position": [
1024,
464
],
"parameters": {
"base": {
"__rl": true,
"mode": "list",
"value": "apptBBudqpCku19Sw",
"cachedResultUrl": "https://airtable.com/apptBBudqpCku19Sw",
"cachedResultName": "Untitled Base"
},
"table": {
"__rl": true,
"mode": "list",
"value": "tbl2nb9vURHJVghpw",
"cachedResultUrl": "https://airtable.com/apptBBudqpCku19Sw/tbl2nb9vURHJVghpw",
"cachedResultName": "Email Campaign Performance"
},
"columns": {
"value": {
"id": "={{ $json.id }}",
"ctr": "={{ $json.ctr }}",
"delivered": "={{ $json.delivered }}",
"open_rate": "={{ $json.open_rate }}",
"week_ending": "={{ $json.week_ending }}",
"unique_opens": "={{ $json.unique_opens }}",
"unique_clicks": "={{ $json.unique_clicks }}",
"performance_delta": 0
},
"schema": [
{
"id": "id",
"type": "string",
"display": true,
"removed": false,
"readOnly": true,
"required": false,
"displayName": "id",
"defaultMatch": true
},
{
"id": "week_ending",
"type": "dateTime",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "week_ending",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "delivered",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "delivered",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "unique_opens",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "unique_opens",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "unique_clicks",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "unique_clicks",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "open_rate",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "open_rate",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "ctr",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "ctr",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "prompt_version",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "prompt_version",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "changes_made",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "changes_made",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "subject_line_used",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "subject_line_used",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "email_template_used",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "email_template_used",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "performance_delta",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "performance_delta",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "decision",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "decision",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"id"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {
"typecast": true
},
"operation": "update"
},
"credentials": {
"airtableTokenApi": {
"id": "77pJURtbEjVETtBQ",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1
},
{
"id": "eaacc354-b476-42e1-aae1-49bdffa6e87c",
"name": "レコード検索",
"type": "n8n-nodes-base.airtable",
"position": [
400,
608
],
"parameters": {
"base": {
"__rl": true,
"mode": "list",
"value": "apptBBudqpCku19Sw",
"cachedResultUrl": "https://airtable.com/apptBBudqpCku19Sw",
"cachedResultName": "Untitled Base"
},
"sort": {
"property": [
{
"field": "week_ending",
"direction": "desc"
}
]
},
"limit": 1,
"table": {
"__rl": true,
"mode": "list",
"value": "tbl2nb9vURHJVghpw",
"cachedResultUrl": "https://airtable.com/apptBBudqpCku19Sw/tbl2nb9vURHJVghpw",
"cachedResultName": "Email Campaign Performance"
},
"options": {},
"operation": "search",
"returnAll": false
},
"credentials": {
"airtableTokenApi": {
"id": "77pJURtbEjVETtBQ",
"name": "Airtable Personal Access Token account"
}
},
"executeOnce": false,
"typeVersion": 2.1
},
{
"id": "6af1e213-6695-4fad-98f9-a1be2db331fb",
"name": "マージ",
"type": "n8n-nodes-base.merge",
"position": [
720,
464
],
"parameters": {},
"typeVersion": 3.2
},
{
"id": "aadc8253-4066-472a-9cbd-92ab2cb07a74",
"name": "レコード検索1",
"type": "n8n-nodes-base.airtable",
"position": [
1168,
464
],
"parameters": {
"base": {
"__rl": true,
"mode": "list",
"value": "apptBBudqpCku19Sw",
"cachedResultUrl": "https://airtable.com/apptBBudqpCku19Sw",
"cachedResultName": "Untitled Base"
},
"limit": 4,
"table": {
"__rl": true,
"mode": "list",
"value": "tbl2nb9vURHJVghpw",
"cachedResultUrl": "https://airtable.com/apptBBudqpCku19Sw/tbl2nb9vURHJVghpw",
"cachedResultName": "Email Campaign Performance"
},
"options": {},
"operation": "search",
"returnAll": false
},
"credentials": {
"airtableTokenApi": {
"id": "77pJURtbEjVETtBQ",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1
},
{
"id": "da85d884-583f-46e1-aab0-fc2fbf44311f",
"name": "レコード作成",
"type": "n8n-nodes-base.airtable",
"position": [
1856,
464
],
"parameters": {
"base": {
"__rl": true,
"mode": "list",
"value": "apptBBudqpCku19Sw",
"cachedResultUrl": "https://airtable.com/apptBBudqpCku19Sw",
"cachedResultName": "Untitled Base"
},
"table": {
"__rl": true,
"mode": "list",
"value": "tbl2nb9vURHJVghpw",
"cachedResultUrl": "https://airtable.com/apptBBudqpCku19Sw/tbl2nb9vURHJVghpw",
"cachedResultName": "Email Campaign Performance"
},
"columns": {
"value": {
"ctr": 0,
"decision": "={{ $json.decision }}",
"delivered": 0,
"open_rate": 0,
"week_ending": "={{ $json.week_ending }}",
"unique_opens": 0,
"unique_clicks": 0,
"test_directive": "={{ $json.test_directive }}",
"test_variable ": "={{ $json.test_variable }}",
"confidence_level": "={{ $json.confidence_level }}",
"test_hypothesis ": "={{ $json.test_hypothesis }}",
"performance_delta": 0,
"implementation_instruction": "={{ $json.implementation_instruction }}"
},
"schema": [
{
"id": "week_ending",
"type": "dateTime",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "week_ending",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "delivered",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "delivered",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "unique_opens",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "unique_opens",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "unique_clicks",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "unique_clicks",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "open_rate",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "open_rate",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "ctr",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "ctr",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "prompt_version",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "prompt_version",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "changes_made",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "changes_made",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "subject_line_used",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "subject_line_used",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "email_body",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "email_body",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "performance_delta",
"type": "number",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "performance_delta",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "decision",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "decision",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "icp ",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "icp ",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "test_variable ",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "test_variable ",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "test_hypothesis ",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "test_hypothesis ",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "confidence_level",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "confidence_level",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "use_case ",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "use_case ",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "test_directive",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "test_directive",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "implementation_instruction",
"type": "string",
"display": true,
"removed": false,
"readOnly": false,
"required": false,
"displayName": "implementation_instruction",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {
"typecast": true
},
"operation": "create"
},
"credentials": {
"airtableTokenApi": {
"id": "77pJURtbEjVETtBQ",
"name": "Airtable Personal Access Token account"
}
},
"typeVersion": 2.1
},
{
"id": "90478127-979e-4a99-ae48-9bcd15ad54fe",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
-48,
304
],
"parameters": {
"width": 1184,
"height": 496,
"content": "## Update Previous Week's Data\n"
},
"typeVersion": 1
},
{
"id": "73a3a0e3-582d-4916-90b9-dbf3a6ee5f78",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1152,
304
],
"parameters": {
"width": 528,
"height": 496,
"content": "## Previous week analysis"
},
"typeVersion": 1
},
{
"id": "8c5c2ab1-d5ed-4282-89f2-a336fff022ad",
"name": "付箋2",
"type": "n8n-nodes-base.stickyNote",
"position": [
1696,
304
],
"parameters": {
"width": 448,
"height": 496,
"content": "## Testing instructions for coming week"
},
"typeVersion": 1
},
{
"id": "46c405d5-e363-42d7-b166-1948d5bbf45c",
"name": "付箋3",
"type": "n8n-nodes-base.stickyNote",
"position": [
496,
-96
],
"parameters": {
"width": 1184,
"height": 384,
"content": "## Prompt Injection\n**<!-- EMAIL OPTIMIZATION GUIDANCE - START -->\n\n## Performance Intelligence from Previous Campaigns\n\nAnother AI agent has analyzed your recent email performance data and identified opportunities for improvement. Consider these data-driven insights while crafting your email:\n\n**Previous Performance:**\n{{ $json.baseline_performance }}\n\n**Key Finding:**\n{{ $json.analysis }}\n\n**Recommended Test:**\n- **What to change:** {{ $json.test_variable }}\n- **How to change it:** {{ $json.test_directive }}\n- **Specific instruction:** {{ $json.implementation_instruction }}\n- **Expected outcome:** {{ $json.test_hypothesis }}\n- **Confidence level:** {{ $json.confidence_level }}\n- **Target metric:** Improve {{ $json.success_metric }} by {{ $json.target_improvement }}\n\n⚠️ **Important:** You maintain creative control. These are data-informed suggestions based on what hasn't worked and what we believe will work better. Use your judgment to incorporate these insights while ensuring the email remains authentic and aligned with the brand voice.\n\n## Required Output Format\n\nYour response MUST include these specific fields in your output (in addition to any other content you generate):\n\n```json\n{\n \"subject_line_used\": \"[The exact subject line you created]\",\n \"email_body\": \"[The complete email body text you created]\",\n \"icp\": \"[Target audience/Ideal Customer Profile for this email]\",\n \"use_case\": \"[Primary use case or problem this email addresses]\"\n}\n```\n\n<!-- EMAIL OPTIMIZATION GUIDANCE - END -->"
},
"typeVersion": 1
},
{
"id": "479113e4-e753-40b1-ae8d-d72d7e7cda62",
"name": "付箋5",
"type": "n8n-nodes-base.stickyNote",
"position": [
1696,
-96
],
"parameters": {
"width": 448,
"height": 384,
"content": "## INTEGRATION INSTRUCTIONS\n\n**Copy and paste the optimization prompt below directly into your email generation prompt as a standalone section.**\n\n### Setup Requirements:\n1. **Before your email node:** Add \"Get Record\" to retrieve the most recent week's recommendations\n2. **After your email node:** Add \"Update Record\" to save what was actually sent\n3. **Use the provided \"Most Recent Week\" code** to identify the correct row for both operations\n4. **Connect to Airtable:** Map the JSON fields to the provided Airtable template\n\nOnce configured, the system runs autonomously—analyzing performance and optimizing future emails automatically."
},
"typeVersion": 1
},
{
"id": "5ca4055b-256d-423d-8a69-51ce35a0bb8b",
"name": "直近週データ取得",
"type": "n8n-nodes-base.code",
"position": [
544,
608
],
"parameters": {
"jsCode": "// Get the record from Airtable List\nconst record = $input.all()[0].json;\n\nreturn [{\n json: {\n id: record.id\n }\n}];"
},
"typeVersion": 2
},
{
"id": "fef40f34-74c2-440d-a36a-741184d8c98c",
"name": "データ X-フォーム",
"type": "n8n-nodes-base.code",
"position": [
400,
448
],
"parameters": {
"jsCode": "// Get ALL items (each day is a separate item)\nconst allDays = $input.all();\nlet delivered = 0;\nlet unique_opens = 0;\nlet unique_clicks = 0;\n\n// Loop through each day (each item)\nallDays.forEach(item => {\n const day = item.json;\n delivered += day.stats[0].metrics.delivered;\n unique_opens += day.stats[0].metrics.unique_opens;\n unique_clicks += day.stats[0].metrics.unique_clicks;\n});\n\n// Calculate rates from totals\nconst open_rate = delivered > 0 ? unique_opens / delivered : 0;\nconst ctr = delivered > 0 ? unique_clicks / delivered : 0;\n\nreturn [{\n json: {\n week_ending: new Date().toISOString(), // ← Changed this line\n delivered: delivered,\n unique_opens: unique_opens,\n unique_clicks: unique_clicks,\n open_rate: open_rate,\n ctr: ctr\n }\n}];"
},
"typeVersion": 2
},
{
"id": "cba63111-b8a7-43b1-91cd-72aab8d0af6b",
"name": "データマージ",
"type": "n8n-nodes-base.code",
"position": [
880,
464
],
"parameters": {
"jsCode": "// Just combine the objects cleanly\nconst stats = $input.all()[0].json;\nconst recordInfo = $input.all()[1].json;\n\nreturn [{\n json: {\n id: recordInfo.id,\n ...stats // Spread all stats fields\n }\n}];"
},
"typeVersion": 2
},
{
"id": "7c91372e-74d2-46e3-a40a-85afb327a797",
"name": "前週分析",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
1296,
464
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "chatgpt-4o-latest",
"cachedResultName": "CHATGPT-4O-LATEST"
},
"options": {},
"messages": {
"values": [
{
"content": "=You are an email optimization specialist analyzing historical performance patterns.\n\nPerformance data (last 4 weeks):\n{{ JSON.stringify($input.all().map(item => item.json), null, 2) }}\n\nIMPORTANT: Analyze ALL weeks for context, but base your recommendation on the MOST RECENT week's performance (the first record in the array).\n\nIMPORTANT: Each recipient only sees our email ONCE. Declining performance means our message is becoming less relevant to NEW recipients, not that people are tired of seeing it.\n\nAnalyze trends to identify ONE element to test based on the most recent week:\n- Most recent week performance is your PRIMARY focus\n- Use previous weeks for trend context only\n- Declining open rates = Subject line losing relevance to current market context/needs\n- Declining CTR = Value prop or CTA not resonating with current audience priorities \n- Stable low metrics = Fundamental mismatch with audience expectations\n- Week-to-week variance = Inconsistent targeting or timing\n\nConsider:\n- Seasonal/temporal relevance (what's top of mind NOW?)\n- Market shifts (new competitors, trends, problems emerging)\n- Audience evolution (are we reaching different segments?)\n\nOutput a SINGLE test variable that adapts to CURRENT market conditions.\n\nFormat your response as JSON:\n{\n \"analysis\": \"Open rates fell 15% over 3 weeks - subject line may not reflect current audience priorities\",\n \"decision\": \"test_subject_line\",\n \"test_variable\": \"subject_line_relevance\",\n \"test_hypothesis\": \"Addressing current market concerns will increase relevance and open rates\",\n \"confidence_level\": \"high\",\n \"test_directive\": \"Reference current/timely pain point\",\n \"implementation_instruction\": \"IMPORTANT: Frame the subject line around a problem or opportunity that's particularly relevant RIGHT NOW in your industry, not timeless benefits\",\n \"baseline_performance\": \"12% open rate, 1.5% CTR\",\n \"success_metric\": \"open_rate\",\n \"target_improvement\": \"15%\"\n}"
}
]
}
},
"credentials": {
"openAiApi": {
"id": "oge162MIvDKTkyvR",
"name": "OpenAi account"
}
},
"typeVersion": 1.8
},
{
"id": "0b834d38-c9e2-46f3-b7f2-615bce2dfab4",
"name": "出力解析",
"type": "n8n-nodes-base.code",
"position": [
1568,
464
],
"parameters": {
"jsCode": "// Get the GPT response (should be just one item now)\nconst gptResponse = $input.first().json;\n\n// Parse the JSON content from the message\nconst analysis = JSON.parse(gptResponse.message.content);\n\n// Get the most recent week_ending from your previous data\n// This assumes you have access to the original data from Search records1\n// You may need to pass this through from an earlier node\nconst previousData = $('Search records1').first().json;\nconst lastWeekEnding = previousData.week_ending;\n\n// Calculate next week's date (7 days after the most recent week_ending)\nconst nextWeekDate = new Date(lastWeekEnding);\nnextWeekDate.setDate(nextWeekDate.getDate() + 7);\n\n// Format the date as full ISO string for Airtable\nconst weekEnding = nextWeekDate.toISOString();\n\n// Return formatted data for Airtable\nreturn [{\n json: {\n week_ending: weekEnding,\n decision: analysis.decision,\n test_variable: analysis.test_variable,\n test_hypothesis: analysis.test_hypothesis,\n confidence_level: analysis.confidence_level,\n test_directive: analysis.test_directive,\n implementation_instruction: analysis.implementation_instruction,\n baseline_performance: analysis.baseline_performance,\n success_metric: analysis.success_metric,\n target_improvement: analysis.target_improvement,\n analysis: analysis.analysis,\n // Initialize performance metrics as 0 for the upcoming week\n delivered: 0,\n unique_opens: 0,\n unique_clicks: 0,\n open_rate: 0,\n ctr: 0,\n performance_delta: 0\n }\n}];"
},
"typeVersion": 2
},
{
"id": "dbe1a199-7f8b-4c69-b6e4-9152d3119b48",
"name": "付箋4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-48,
-96
],
"parameters": {
"width": 528,
"height": 384,
"content": "## PURPOSE\n\nThis flow functions as a true agentic, drag-and-drop extension that continuously improves any automated email campaign. Simply add the Airtable template, connect it to your email sending node, and link the remaining components. The system automatically analyzes previous weeks' performance data, evaluates results, and updates future strategies based on past decisions—constantly optimizing toward better email engagement. \n\n**Requirements:** SendGrid or similar email service provider (ESP) for tracking metrics."
},
"typeVersion": 1
},
{
"id": "17f731d5-650e-432d-8691-a1c1e28e4e5f",
"name": "スケジュールトリガー",
"type": "n8n-nodes-base.scheduleTrigger",
"position": [
-16,
640
],
"parameters": {
"rule": {
"interval": [
{}
]
}
},
"typeVersion": 1.2
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "",
"connections": {
"6af1e213-6695-4fad-98f9-a1be2db331fb": {
"main": [
[
{
"node": "cba63111-b8a7-43b1-91cd-72aab8d0af6b",
"type": "main",
"index": 0
}
]
]
},
"cba63111-b8a7-43b1-91cd-72aab8d0af6b": {
"main": [
[
{
"node": "abeda94c-de1e-492d-b63a-ad01ad1f7ab2",
"type": "main",
"index": 0
}
]
]
},
"fef40f34-74c2-440d-a36a-741184d8c98c": {
"main": [
[
{
"node": "6af1e213-6695-4fad-98f9-a1be2db331fb",
"type": "main",
"index": 0
}
]
]
},
"0b834d38-c9e2-46f3-b7f2-615bce2dfab4": {
"main": [
[
{
"node": "da85d884-583f-46e1-aab0-fc2fbf44311f",
"type": "main",
"index": 0
}
]
]
},
"abeda94c-de1e-492d-b63a-ad01ad1f7ab2": {
"main": [
[
{
"node": "aadc8253-4066-472a-9cbd-92ab2cb07a74",
"type": "main",
"index": 0
}
]
]
},
"eaacc354-b476-42e1-aae1-49bdffa6e87c": {
"main": [
[
{
"node": "5ca4055b-256d-423d-8a69-51ce35a0bb8b",
"type": "main",
"index": 0
}
]
]
},
"aadc8253-4066-472a-9cbd-92ab2cb07a74": {
"main": [
[
{
"node": "7c91372e-74d2-46e3-a40a-85afb327a797",
"type": "main",
"index": 0
}
]
]
},
"17f731d5-650e-432d-8691-a1c1e28e4e5f": {
"main": [
[
{
"node": "1da7c095-0587-46fa-ae74-558f9cf7d0e1",
"type": "main",
"index": 0
}
]
]
},
"1da7c095-0587-46fa-ae74-558f9cf7d0e1": {
"main": [
[
{
"node": "fef40f34-74c2-440d-a36a-741184d8c98c",
"type": "main",
"index": 0
},
{
"node": "eaacc354-b476-42e1-aae1-49bdffa6e87c",
"type": "main",
"index": 0
}
]
]
},
"5ca4055b-256d-423d-8a69-51ce35a0bb8b": {
"main": [
[
{
"node": "6af1e213-6695-4fad-98f9-a1be2db331fb",
"type": "main",
"index": 1
}
]
]
},
"7c91372e-74d2-46e3-a40a-85afb327a797": {
"main": [
[
{
"node": "0b834d38-c9e2-46f3-b7f2-615bce2dfab4",
"type": "main",
"index": 0
}
]
]
},
"05a392cc-4f92-4716-8738-6a0fbd45e3ed": {
"main": [
[
{
"node": "1da7c095-0587-46fa-ae74-558f9cf7d0e1",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
Slack 上にユーザーに通知しながら、AI を使って LinkedIn への貢献を作成する
AIを使ってLinkedInでの貢献を作成し、Slackでユーザーに通知する
Set
Code
Html
+
Set
Code
Html
33 ノードDarryn
人工知能
ソーシャルメディアAIエージェント - Telegram
AIベースのソーシャルメディア拡声器
Code
Wait
Merge
+
Code
Wait
Merge
26 ノードMudit Juneja
人工知能
ブログ投稿自動化とSNSプロモーションエージェント
GPT-4、Perplexity、WordPressを使用したSEOブログ作成の自動化+ソーシャルメディア
Set
Code
Gmail
+
Set
Code
Gmail
79 ノードLukaszB
デザイン
Airtable、OpenAI、Unipile を使用した LinkedIn リード生成と自動ダイレクトメッセージングの自動化
Airtable、OpenAI、Unipileを使用した自動LinkedInリード生成とInMail投稿
If
Set
Code
+
If
Set
Code
143 ノードRuben AI
リードナーチャリング
WordPress コンテンツジェネレータ v3
WordPress コンテンツジェネレーター v3
If
Set
Code
+
If
Set
Code
102 ノードAlex Kim
人工知能
OpenAI、ElevenLabs、Hedraを使用してウイルスのな赤ちゃんポッドキャストYouTubeショートビデオを作成する
OpenAI、ElevenLabs、およびHedraを使用してウイルスのな赤ちゃんPodcastのYouTubeショートビデオを作成する
Code
Wait
Merge
+
Code
Wait
Merge
38 ノードElectrabot
コンテンツ作成