インタビュー品質審査
上級
これはContent Creation, Multimodal AI分野の自動化ワークフローで、23個のノードを含みます。主にIf, Code, Slack, GoogleSheets, ManualTriggerなどのノードを使用。 GPT-4o-mini と Google スプレッドシートを使って、Slack でインタビューフィードバックを監査し、レポートを生成
前提条件
- •Slack Bot Token または Webhook URL
- •Google Sheets API認証情報
- •OpenAI API Key
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "DZrX6urOE53Tm4jp",
"meta": {
"instanceId": "8443f10082278c46aa5cf3acf8ff0f70061a2c58bce76efac814b16290845177",
"templateCredsSetupCompleted": true
},
"name": "Interview Quality Audit",
"tags": [],
"nodes": [
{
"id": "9e228e13-31c4-4f40-8bc1-83ffc0c0df21",
"name": "ワークフロー実行時",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-176,
16
],
"parameters": {},
"typeVersion": 1
},
{
"id": "4656de9f-4ad6-4b48-a8b0-6802cd1e88ca",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
576,
160
],
"parameters": {
"height": 384,
"content": " ✅ Validate AI Response\nType: Conditional Logic\nPurpose: Quality control checkpoint\nValidation:\n\nResponse text is not undefined\nContains valid data structure\n\nRouting:\n\n✅ Valid → Continue to JSON parsing\n❌ Invalid → Log to error sheet\n\nFunction: Prevents malformed responses from corrupting pipeline"
},
"typeVersion": 1
},
{
"id": "ed2e275a-ea76-4d78-b9da-2149ec9f5b50",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
224,
352
],
"parameters": {
"height": 320,
"content": "🤖 AI Quality Evaluator (GPT-4o)\nType: AI Language Model\nPurpose: Cognitive engine for feedback analysis\nConfiguration:\n\nModel: gpt-4o-mini\nPlatform: Azure OpenAI\nIntegration: LangChain\n\nConnects to Azure GPT-4o-mini\nPowers NLP evaluation\nGenerates structured JSON outputs"
},
"typeVersion": 1
},
{
"id": "97cdbdb7-5306-4910-8e93-927940ed699d",
"name": "付箋2",
"type": "n8n-nodes-base.stickyNote",
"position": [
224,
-560
],
"parameters": {
"width": 336,
"height": 544,
"content": "🔍 Analyze Feedback Quality\nType: LangChain LLM Chain\nPurpose: Core AI evaluation engine\nEvaluation Dimensions (1-5 Scale):\n\nSpecificity (35%) - Concrete details\nStructure/STAR (15%) - Situation-Task-Action-Result\nBias-Free Language (15%) - No gender/appearance bias\nActionability (10%) - Decision usefulness\nDepth (25%) - Multiple competencies\n\nScoring:\n\n5: Excellent - Clear STAR with evidence\n3: Adequate - Some info but vague\n1: Unusable - Purely subjective\n\nSpecial Rules:\n\nFeedback <30 words → Scores ≤2\nExtracts vague phrases (\"great guy\", \"nice energy\")\n\nOutput: JSON with scores and vague_phrases array"
},
"typeVersion": 1
},
{
"id": "6681d513-9520-4c78-8595-cbb27bdfff9c",
"name": "付箋3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-64,
192
],
"parameters": {
"height": 368,
"content": "📋 Fetch Interview Feedback\nType: Google Sheets Read\nPurpose: Retrieve raw feedback data\nConfiguration:\n\nDocument: Interviewer Brief Pack\nSheet: Raw_Feedback\nOperation: Read all rows\n\nData Retrieved:\nTimestamp, Candidate_ID, Role, Stage, Interviewer_Email, Feedback_Text, row_number\nOutput: All feedback records passed to AI evaluation"
},
"typeVersion": 1
},
{
"id": "f3e8a974-86fa-4a81-a5bd-3cbebf6302b4",
"name": "付箋4",
"type": "n8n-nodes-base.stickyNote",
"position": [
928,
-224
],
"parameters": {
"width": 288,
"height": 208,
"content": "🔄 Parse AI JSON Output\nType: JavaScript Code\nPurpose: Convert string to structured data\nFunction:\n\nSafely parses AI text to JSON object\nTry-catch error handling\nThrows descriptive errors for debugging"
},
"typeVersion": 1
},
{
"id": "78deb6fe-c12f-4281-974d-19a9155f0f0e",
"name": "付箋5",
"type": "n8n-nodes-base.stickyNote",
"position": [
1664,
448
],
"parameters": {
"width": 320,
"height": 224,
"content": "🎯 Check if Training Needed\nType: Conditional Logic\nPurpose: Identify low performers\nCondition: Score < 50\nRouting:\n\n✅ <50 → Send training resources\n❌ ≥50 → No additional action\n\nFunction: Triggers enhanced coaching for scores below threshold"
},
"typeVersion": 1
},
{
"id": "97e18f0a-359c-4bf3-8ff8-bfe51a193e7d",
"name": "付箋6",
"type": "n8n-nodes-base.stickyNote",
"position": [
2064,
464
],
"parameters": {
"width": 400,
"height": 304,
"content": "📚 Send Training Recommendations\nType: Slack Notification\nPurpose: Deliver coaching resources\nMessage Content:\n\nScore, Flags, Specific vague phrases\nImprovement guidance (STAR method)\n📘 STAR Method Guide link\n🎥 Bias-Free Interviewing Video link\n\nFunction:\n\nDetailed coaching for scores <50\nLinks to training resources\nSupportive, growth-focused tone"
},
"typeVersion": 1
},
{
"id": "b88c8198-7941-41a6-8b7f-406f62371288",
"name": "付箋7",
"type": "n8n-nodes-base.stickyNote",
"position": [
880,
464
],
"parameters": {
"height": 320,
"content": "🚨 Log AI Errors\nType: Google Sheets Append\nPurpose: Error tracking\nConfiguration:\n\nSheet: error log sheet\nOperation: APPEND\n\nFunction:\n\nCaptures AI failures\nCreates error audit trail\nEnables debugging and monitoring\nTracks system reliability\n\n"
},
"typeVersion": 1
},
{
"id": "a98fbf8e-388a-40fe-a7a7-5e54866da422",
"name": "付箋9",
"type": "n8n-nodes-base.stickyNote",
"position": [
1808,
-144
],
"parameters": {
"width": 336,
"height": 304,
"content": "💬 Send Feedback Summary\nType: Slack Notification\nPurpose: Deliver quality report\nMessage Structure:\n\nRole, Stage, Score (X/100), Flags\nHigh Quality: Congratulations message\nNeeds Improvement: Vague phrases + STAR tips\n\nFunction:\n\nImmediate feedback to interviewer\nSpecific, actionable guidance\nEncourages continuous improvement"
},
"typeVersion": 1
},
{
"id": "989baf43-960a-4393-9640-02b4454289d3",
"name": "付箋10",
"type": "n8n-nodes-base.stickyNote",
"position": [
1488,
-592
],
"parameters": {
"width": 352,
"height": 336,
"content": "💾 Save Scores to Spreadsheet\nType: Google Sheets Update\nPurpose: Persist quality metrics\nConfiguration:\n\nSheet: Raw_Feedback\nOperation: UPDATE (match by row_number)\n\nFields Updated:\n\nScore (0-100)\nFlags (quality issues)\nLLM_JSON (complete AI analysis)\n\nFunction: Updates original rows, creates audit trail for trend analysis"
},
"typeVersion": 1
},
{
"id": "c7fbcc25-cdde-4b02-b4ec-afdae31fff2e",
"name": "付箋11",
"type": "n8n-nodes-base.stickyNote",
"position": [
1152,
160
],
"parameters": {
"width": 288,
"height": 480,
"content": "🧮 Calculate Weighted Quality Score\nType: JavaScript Code\nPurpose: Compute final score and flags\nWeights:\nSpecificity 35% | Depth 25% | Structure 15% | Bias-Free 15% | Actionability 10%\nFlags:\n\n\"low_detail\": specificity < 3 OR depth < 3\n\"bias\": bias_free_language < 3\n\nFunction:\n\nCalculates 0-100 score\nGenerates quality flags\nFormats vague phrases for Slack\nPreserves context (Role, Stage, row_number)\n\nOutput: Score, Flags, LLM_JSON, VaguePhrasesFormatted"
},
"typeVersion": 1
},
{
"id": "69339a87-95fa-4827-a768-a6a9aa1def9e",
"name": "生のフィードバックデータを取得",
"type": "n8n-nodes-base.googleSheets",
"position": [
32,
16
],
"parameters": {
"options": {},
"sheetName": {
"__rl": true,
"mode": "list",
"value": 315277036,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y/edit#gid=315277036",
"cachedResultName": "Raw_Feedback"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y/edit?usp=drivesdk",
"cachedResultName": "Interviewer Brief Pack "
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "kpPEOLCGn963qpoh",
"name": "automations@techdome.ai"
}
},
"typeVersion": 4.6,
"alwaysOutputData": false
},
{
"id": "99814f2b-ab97-49bf-8eec-43083f731dad",
"name": "AI品質評価 (GPT-4o1",
"type": "@n8n/n8n-nodes-langchain.lmChatAzureOpenAi",
"position": [
272,
192
],
"parameters": {
"model": "gpt-4o-mini",
"options": {}
},
"credentials": {
"azureOpenAiApi": {
"id": "C3WzT18XqF8OdVM6",
"name": "Azure Open AI account"
}
},
"typeVersion": 1
},
{
"id": "6517c215-19c5-4644-97f6-26d650c65540",
"name": "フィードバック品質を分析",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
288,
16
],
"parameters": {
"text": "=You are an Interview Feedback Quality Auditor.\n\nYour task is to evaluate interviewer feedback notes and score them across 5 dimensions:\n- specificity (1–5)\n- structure_STAR (1–5)\n- bias_free_language (1–5)\n- actionability (1–5)\n- depth (1–5)\n\n⚖️ Scoring Guidelines:\n- 5 = Excellent: Clear, detailed, STAR format (Situation, Task, Action, Result) explicitly used or strongly implied, with evidence/examples.\n- 4 = Good: Mostly structured, some detail, minor gaps, still useful for decisions.\n- 3 = Adequate: Some relevant info but mixed with vagueness, missing STAR elements.\n- 2 = Poor: Mostly vague or generic, no clear evidence, over-reliant on subjective phrasing.\n- 1 = Unusable: Purely subjective (“great guy”, “nice energy”), no actionable details.\n\nBias-free language: Score low if feedback references gender, looks, personality, or irrelevant traits.\n\nActionability: Score higher if the feedback directly helps in making a decision (e.g., “passed all test cases under time constraint” vs “seems smart”).\n\nDepth: Score higher if multiple competencies or dimensions are covered, lower if only 1 vague point.\n\n🚨 Additional Rules:\n- If text <30 words OR contains mostly emojis/placeholders → set ALL scores ≤2 and add `\"too_short\"` to vague_phrases.\n- Extract vague phrases (e.g., “good energy”, “smart guy”, “should be fine”) into `\"vague_phrases\"` array.\n\nReturn ONLY valid JSON in this schema:\n{\n \"specificity\": <1–5>,\n \"structure\": <1–5>,\n \"bias_free_language\": <1–5>,\n \"actionability\": <1–5>,\n \"depth\": <1–5>,\n \"vague_phrases\": [ ... ]\n}\n",
"batching": {},
"messages": {
"messageValues": [
{
"message": "You are an Interview Feedback Quality Auditor. Evaluate interview feedback for specificity, structure (STAR), bias-free language, actionability, and depth. Be strict but fair. Always return **only valid JSON** that follows the given schema.Return ONLY valid JSON, no explanations, no markdown, no quotes wrapping the whole object.\n"
},
{
"type": "HumanMessagePromptTemplate",
"message": "=Role: {{$json[\"Role\"]}} Stage: {{$json[\"Stage\"]}} Feedback: {{$json[\"Feedback_Text\"]}}"
}
]
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "0612aeb7-a3a2-4215-9910-4cd077e06586",
"name": "AIの応答を検証",
"type": "n8n-nodes-base.if",
"position": [
640,
16
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "4901c65c-6aaf-4efe-a133-1fedfedc0bca",
"operator": {
"type": "string",
"operation": "notEquals"
},
"leftValue": "={{ $json.text }}",
"rightValue": "undefined "
}
]
}
},
"typeVersion": 2.2
},
{
"id": "f89f5698-5d3c-4771-8b0b-511b32b9fc33",
"name": "AI出力 (JSON) を解析",
"type": "n8n-nodes-base.code",
"position": [
1024,
0
],
"parameters": {
"jsCode": "// OpenAI output comes as string in $json.text\nconst raw = $json[\"text\"];\n\n// Parse safely\nlet parsed;\ntry {\n parsed = JSON.parse(raw);\n} catch (e) {\n throw new Error(\"Invalid JSON returned by OpenAI: \" + raw);\n}\n\nreturn parsed;\n"
},
"typeVersion": 2
},
{
"id": "1174cddb-9bf5-4582-a7ba-aed412336b7f",
"name": "加重品質スコアを計算",
"type": "n8n-nodes-base.code",
"position": [
1232,
0
],
"parameters": {
"jsCode": "// Input = parsed JSON from AI\nconst data = $json;\n\n// Weights (can be adjusted or moved to Config sheet later)\nconst weights = {\n specificity: 0.35,\n structure: 0.15,\n bias_free_language: 0.15,\n actionability: 0.10,\n depth: 0.25,\n};\n\n// ✅ Fallback for structure (AI might send structure or structure_star)\nconst structureValue = data.structure ?? data.structure_star ?? 0;\n\n// Calculate weighted score safely\nlet total = (\n (data.specificity * weights.specificity) +\n (structureValue * weights.structure) +\n (data.bias_free_language * weights.bias_free_language) +\n (data.actionability * weights.actionability) +\n (data.depth * weights.depth)\n) / (\n weights.specificity +\n weights.structure +\n weights.bias_free_language +\n weights.actionability +\n weights.depth\n);\n\n// Scale to 0–100\ntotal = Math.round(total * 20);\n\n// Flags\nconst flags = [];\nif ((data.specificity ?? 0) < 3 || (data.depth ?? 0) < 3) {\n flags.push(\"low_detail\");\n}\nif ((data.bias_free_language ?? 0) < 3) {\n flags.push(\"bias\");\n}\n\n// Format vague phrases if they exist\nlet vagueFormatted = \"\";\nif (Array.isArray(data.vague_phrases) && data.vague_phrases.length > 0) {\n vagueFormatted = data.vague_phrases.map(p => `• ${p}`).join(\"\\n\");\n}\n\n// Return clean JSON\nreturn {\n json: {\n Score: total,\n Flags: flags.join(\", \"),\n LLM_JSON: JSON.stringify(data),\n VaguePhrasesFormatted: vagueFormatted, // for Slack message\n row_number: $json.row_number, // keep tracking the row\n Role: $item(0).$node[\"Fetch Raw Feedback Data\"].json.Role,\n Stage: $item(0).$node[\"Fetch Raw Feedback Data\"].json.Stage\n }\n};\n"
},
"typeVersion": 2
},
{
"id": "5d940fc3-8727-4dc4-9a58-133ab5180f08",
"name": "スコアをスプレッドシートに保存",
"type": "n8n-nodes-base.googleSheets",
"position": [
1600,
-208
],
"parameters": {
"columns": {
"value": {
"Flags": "={{ $json.Flags }}",
"Score": "={{ $json.Score }}",
"LLM_JSON": "={{ $json.LLM_JSON }}",
"row_number": "={{ $('Fetch Raw Feedback Data').item.json.row_number }}"
},
"schema": [
{
"id": "Timestamp",
"type": "string",
"display": true,
"required": false,
"displayName": "Timestamp",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Candidate_ID",
"type": "string",
"display": true,
"required": false,
"displayName": "Candidate_ID",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Role",
"type": "string",
"display": true,
"required": false,
"displayName": "Role",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Stage",
"type": "string",
"display": true,
"required": false,
"displayName": "Stage",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Interviewer_Email",
"type": "string",
"display": true,
"required": false,
"displayName": "Interviewer_Email",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Feedback_Text",
"type": "string",
"display": true,
"required": false,
"displayName": "Feedback_Text",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Score",
"type": "string",
"display": true,
"required": false,
"displayName": "Score",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Flags",
"type": "string",
"display": true,
"required": false,
"displayName": "Flags",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "LLM_JSON",
"type": "string",
"display": true,
"required": false,
"displayName": "LLM_JSON",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "row_number",
"type": "number",
"display": true,
"removed": false,
"readOnly": true,
"required": false,
"displayName": "row_number",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"row_number"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "update",
"sheetName": {
"__rl": true,
"mode": "list",
"value": 315277036,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y/edit#gid=315277036",
"cachedResultName": "Raw_Feedback"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y/edit?usp=drivesdk",
"cachedResultName": "Interviewer Brief Pack "
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "kpPEOLCGn963qpoh",
"name": "automations@techdome.ai"
}
},
"typeVersion": 4.6,
"alwaysOutputData": true
},
{
"id": "40df551b-4ca7-4268-a1fe-4ebb01fd304f",
"name": "面接官にフィードバック概要を送信",
"type": "n8n-nodes-base.slack",
"position": [
1616,
0
],
"webhookId": "ddaa7632-9e35-4bd3-82d6-572d5cae84cc",
"parameters": {
"text": "=:mag: *Interview Feedback Audit*\n\n*Role:* {{ $json[\"Role\"] }}\n*Stage:* {{ $json[\"Stage\"] }}\n\n:bar_chart: *Score:* {{ $json[\"Score\"] }}/100 \n:warning: *Flags:* {{ $json[\"Flags\"] || \"none\" }}\n\n{{ $json[\"VaguePhrasesFormatted\"] ? \n (\"_We noticed vague or incomplete feedback. Examples:_\\n\" + $json[\"VaguePhrasesFormatted\"] + \n \"\\n\\n_To improve: try being more specific and evidence-based (e.g., STAR method)._\") \n : \n \"_✅ Great job! Your feedback was specific, structured, and bias-free._\" \n}}\n\nKeep it up — your detailed notes help us make fairer hiring decisions 🚀\n\n_Automated with this n8n workflow_\n",
"user": {
"__rl": true,
"mode": "list",
"value": "U09HMPVD466",
"cachedResultName": "newscctv22"
},
"select": "user",
"otherOptions": {}
},
"credentials": {
"slackApi": {
"id": "rNqvWj9TfChPVRYY",
"name": "Slack account vivek"
}
},
"typeVersion": 2.3
},
{
"id": "de2e5d93-df58-41ef-a22f-e7a681308a64",
"name": "トレーニングの必要性を確認",
"type": "n8n-nodes-base.if",
"position": [
1776,
288
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "loose"
},
"combinator": "and",
"conditions": [
{
"id": "62f94225-d1b6-42a0-a3e9-7afceb9b937d",
"operator": {
"type": "number",
"operation": "lt"
},
"leftValue": "={{$json[\"Score\"]}}",
"rightValue": 50
}
]
},
"looseTypeValidation": true
},
"typeVersion": 2.2
},
{
"id": "49b80e52-27d3-455d-8082-e3e0f2365a69",
"name": "トレーニング推奨事項を送信",
"type": "n8n-nodes-base.slack",
"position": [
2064,
272
],
"webhookId": "ddaa7632-9e35-4bd3-82d6-572d5cae84cc",
"parameters": {
"text": "=:books: *Training Recommendation*\n\nYour interview feedback for **{{$json[\"Role\"]}} ({{$json[\"Stage\"]}})** was reviewed.\n\n📊 **Score:** {{$json[\"Score\"]}}/100 \n⚠️ **Flags:** {{$json[\"Flags\"] || \"none\"}} \n\nWe noticed vague or incomplete feedback. Here are some examples: \n{{ $json.VaguePhrasesFormatted }}\n\nTo improve: try using structured, evidence-based feedback (e.g., STAR method). \n\n👉 Helpful resources: \n📘 [STAR Method Guide](https://example.com/star-training) \n🎥 [Bias-Free Interviewing Video](https://example.com/interview-bias) \n\nYour detailed notes help us make fairer hiring decisions 🚀\n",
"user": {
"__rl": true,
"mode": "list",
"value": "U09HMPVD466",
"cachedResultName": "newscctv22"
},
"select": "user",
"otherOptions": {}
},
"credentials": {
"slackApi": {
"id": "rNqvWj9TfChPVRYY",
"name": "Slack account vivek"
}
},
"typeVersion": 2.3
},
{
"id": "48988700-46e2-4464-87a5-99054d6e9cbc",
"name": "AIエラーをログ記録",
"type": "n8n-nodes-base.googleSheets",
"position": [
944,
304
],
"parameters": {
"columns": {
"value": {},
"schema": [],
"mappingMode": "defineBelow",
"matchingColumns": [],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "append",
"sheetName": {
"__rl": true,
"mode": "list",
"value": 1338537721,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y/edit#gid=1338537721",
"cachedResultName": "error log sheet"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1Uldk_4BxWbdZTDZxFUeohIfeBmGHHqVEl9Ogb0l6R8Y/edit?usp=drivesdk",
"cachedResultName": "Interviewer Brief Pack "
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "kpPEOLCGn963qpoh",
"name": "automations@techdome.ai"
}
},
"typeVersion": 4.7
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "e2d8cf56-20c5-4e9a-9d03-d8b8536128fe",
"connections": {
"f89f5698-5d3c-4771-8b0b-511b32b9fc33": {
"main": [
[
{
"node": "1174cddb-9bf5-4582-a7ba-aed412336b7f",
"type": "main",
"index": 0
}
]
]
},
"0612aeb7-a3a2-4215-9910-4cd077e06586": {
"main": [
[
{
"node": "f89f5698-5d3c-4771-8b0b-511b32b9fc33",
"type": "main",
"index": 0
}
],
[
{
"node": "48988700-46e2-4464-87a5-99054d6e9cbc",
"type": "main",
"index": 0
}
]
]
},
"69339a87-95fa-4827-a768-a6a9aa1def9e": {
"main": [
[
{
"node": "6517c215-19c5-4644-97f6-26d650c65540",
"type": "main",
"index": 0
}
]
]
},
"6517c215-19c5-4644-97f6-26d650c65540": {
"main": [
[
{
"node": "0612aeb7-a3a2-4215-9910-4cd077e06586",
"type": "main",
"index": 0
}
]
]
},
"de2e5d93-df58-41ef-a22f-e7a681308a64": {
"main": [
[
{
"node": "49b80e52-27d3-455d-8082-e3e0f2365a69",
"type": "main",
"index": 0
}
]
]
},
"5d940fc3-8727-4dc4-9a58-133ab5180f08": {
"main": [
[]
]
},
"99814f2b-ab97-49bf-8eec-43083f731dad": {
"ai_languageModel": [
[
{
"node": "6517c215-19c5-4644-97f6-26d650c65540",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"1174cddb-9bf5-4582-a7ba-aed412336b7f": {
"main": [
[
{
"node": "40df551b-4ca7-4268-a1fe-4ebb01fd304f",
"type": "main",
"index": 0
},
{
"node": "5d940fc3-8727-4dc4-9a58-133ab5180f08",
"type": "main",
"index": 0
},
{
"node": "de2e5d93-df58-41ef-a22f-e7a681308a64",
"type": "main",
"index": 0
}
]
]
},
"9e228e13-31c4-4f40-8bc1-83ffc0c0df21": {
"main": [
[
{
"node": "69339a87-95fa-4827-a768-a6a9aa1def9e",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - コンテンツ作成, マルチモーダルAI
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
雇用後の定着追跡
従業員の定着分析レポートを生成するためにGPT-4oとGmail要約を使用する
If
Code
Gmail
+
If
Code
Gmail
19 ノードRahul Joshi
コンテンツ作成
## 自ホストnipoti n8N ユーザーのみ:
Zendesk への自動返信の生成:GPT-4o-mini、Google スプレッドシート、Gmail
Code
Gmail
Merge
+
Code
Gmail
Merge
24 ノードRahul Joshi
コンテンツ作成
顧客オンボーディングのヘルプリクエスト(Typeform → Gmail → Sheets)
顧客エントリヘルプリクエスト(Typeform → Gmail → Sheets)
If
Code
Gmail
+
If
Code
Gmail
28 ノードRahul Joshi
コンテンツ作成
営業担当パフォーマンストラッカー
HighLevel CRM、GPT-4o、Notion、そしてSlackを使った自動化のな営業ランキング
If
Code
Slack
+
If
Code
Slack
21 ノードRahul Joshi
顧客管理
GoHighLevelパイプライン速度追跡ツールと自動化された停滞トランザクションアラート
GoHighLevel、Gmail、Slackを使用してパイプライン速度を分析し、停滞取引にアラートを発する
If
Code
Gmail
+
If
Code
Gmail
25 ノードRahul Joshi
コンテンツ作成
Azure OpenAI とGoogle Workspace で DEI 資格フィルター Automation
Azure GPT-4o、Googleドライブ、テーブルを使ってDEI資格フィルタリングを自動化
If
Code
Gmail
+
If
Code
Gmail
19 ノードRahul Joshi
コンテンツ作成
ワークフロー情報
難易度
上級
ノード数23
カテゴリー2
ノードタイプ8
作成者
Rahul Joshi
@rahul08Rahul Joshi is a seasoned technology leader specializing in the n8n automation tool and AI-driven workflow automation. With deep expertise in building open-source workflow automation and self-hosted automation platforms, he helps organizations eliminate manual processes through intelligent n8n ai agent automation solutions.
外部リンク
n8n.ioで表示 →
このワークフローを共有