AI履歴書最適化ツール

上級

これはAI Summarization, Multimodal AI分野の自動化ワークフローで、18個のノードを含みます。主にSet, Code, Gmail, Merge, Webhookなどのノードを使用。 Gemini分析とメールレポートで履歴書を職位記述に一致させる

前提条件
  • Googleアカウント + Gmail API認証情報
  • HTTP Webhookエンドポイント(n8nが自動生成)
  • ターゲットAPIの認証情報が必要な場合あり
  • Google Gemini API Key
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
  "id": "TzPKUZdrlcTUenHQ",
  "meta": {
    "instanceId": "d1dc073e8e3059a23e2730f69cb1b90065a2ac39039fea0727fdf9bee77a9131",
    "templateCredsSetupCompleted": true
  },
  "name": "AI CV Optimizer",
  "tags": [],
  "nodes": [
    {
      "id": "08a1bb78-33db-4698-9970-c5b38c25835c",
      "name": "Webhook - CV Optimizer Form",
      "type": "n8n-nodes-base.webhook",
      "position": [
        -224,
        272
      ],
      "webhookId": "d50feff6-c48f-41e8-8df2-62ee9864907c",
      "parameters": {
        "path": "cv-optimizer",
        "options": {},
        "responseMode": "responseNode",
        "multipleMethods": true
      },
      "typeVersion": 2.1
    },
    {
      "id": "310ffa59-1f26-4ddd-881d-c5819b89d7f1",
      "name": "Webhook Response - HTML Form",
      "type": "n8n-nodes-base.respondToWebhook",
      "position": [
        0,
        176
      ],
      "parameters": {
        "options": {},
        "respondWith": "text",
        "responseBody": "=<!DOCTYPE html>\n<html lang=\"en\">\n<head>\n  <meta charset=\"UTF-8\" />\n  <meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\" />\n  <title>AI CV Optimizer</title>\n  <style>\n    :root {\n      --primary: #2563eb;\n      --primary-hover: #1e4ed8;\n      --gray-light: #f9fafb;\n      --gray: #ccc;\n      --text-dark: #333;\n      --radius: 10px;\n    }\n    body {\n      font-family: Arial, sans-serif;\n      background: var(--gray-light);\n      margin: 0;\n      padding: 0;\n      display: flex;\n      justify-content: center;\n      align-items: center;\n      min-height: 100vh;\n    }\n    .container {\n      background: white;\n      padding: 2rem;\n      border-radius: var(--radius);\n      box-shadow: 0 6px 16px rgba(0,0,0,0.1);\n      max-width: 420px;\n      width: 100%;\n    }\n    h2 {\n      margin-bottom: 1.5rem;\n      color: var(--text-dark);\n      font-size: 1.5rem;\n      text-align: center;\n    }\n    label {\n      font-weight: 600;\n      display: block;\n      margin: 1rem 0 0.5rem;\n    }\n    input[type=\"file\"], input[type=\"text\"], input[type=\"email\"] {\n      width: 100%;\n      padding: 0.75rem;\n      border: 1px solid var(--gray);\n      border-radius: var(--radius);\n      font-size: 0.95rem;\n      box-sizing: border-box;\n    }\n    input:focus {\n      border-color: var(--primary);\n      outline: none;\n      box-shadow: 0 0 0 3px rgba(37,99,235,0.15);\n    }\n    button {\n      margin-top: 1.5rem;\n      padding: 0.9rem;\n      background: var(--primary);\n      color: white;\n      border: none;\n      border-radius: var(--radius);\n      width: 100%;\n      font-size: 1rem;\n      font-weight: 600;\n      cursor: pointer;\n      transition: background 0.2s ease;\n    }\n    button:hover {\n      background: var(--primary-hover);\n    }\n    button:disabled {\n      background: #9ca3af;\n      cursor: not-allowed;\n    }\n    .status {\n      margin-top: 1rem;\n      font-size: 0.9rem;\n      text-align: center;\n    }\n    .status.success { color: green; }\n    .status.error { color: red; }\n  </style>\n</head>\n<body>\n  <div class=\"container\">\n    <h2>AI CV Optimizer</h2>\n    <form id=\"cvForm\">\n      <label for=\"cv\">Upload your CV (PDF):</label>\n      <input type=\"file\" id=\"cv\" name=\"cv\" accept=\"application/pdf\" required />\n\n      <label for=\"job_url\">Job Posting URL:</label>\n      <input type=\"text\" id=\"job_url\" name=\"job_url\" placeholder=\"https://linkedin.com/job/123\" required />\n\n      <label for=\"email\">Your Email:</label>\n      <input type=\"email\" id=\"email\" name=\"email\" placeholder=\"you@example.com\" required/>\n\n      <button type=\"submit\">Check My CV</button>\n      <div class=\"status\" id=\"status\"></div>\n    </form>\n  </div>\n\n  <script>\n    const form = document.getElementById(\"cvForm\");\n    const statusDiv = document.getElementById(\"status\");\n\n    form.addEventListener(\"submit\", async (e) => {\n      e.preventDefault();\n\n      const formData = new FormData(form);\n      statusDiv.textContent = \"⏳ Uploading and analyzing your CV...\";\n      statusDiv.className = \"status\";\n\n      try {\n        const res = await fetch(\"https://n8nworkflow.eu/webhook-test/cv-optimizer\", {\n          method: \"POST\",\n          body: formData\n        });\n\n        if (!res.ok) {\n          throw new Error(\"Server error: \" + res.statusText);\n        }\n\n        const data = await res.json();\n        console.log(\"n8n response:\", data);\n        statusDiv.textContent = \"✅ CV submitted successfully! Check your email for results.\";\n        statusDiv.className = \"status success\";\n      } catch (err) {\n        console.error(err);\n        statusDiv.textContent = \"❌ Error: \" + err.message;\n        statusDiv.className = \"status error\";\n      }\n    });\n  </script>\n</body>\n</html>"
      },
      "typeVersion": 1.4
    },
    {
      "id": "5f221527-5476-49cb-a166-eb3213f5d4a6",
      "name": "履歴書テキスト抽出 (PDF)",
      "type": "n8n-nodes-base.extractFromFile",
      "position": [
        0,
        384
      ],
      "parameters": {
        "options": {},
        "operation": "pdf",
        "binaryPropertyName": "=cv"
      },
      "typeVersion": 1
    },
    {
      "id": "75eb814c-8d04-4310-bc01-3fcaf1640634",
      "name": "履歴書テキスト準備",
      "type": "n8n-nodes-base.set",
      "position": [
        224,
        384
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "be5e5936-7940-43be-b905-62b54d9db076",
              "name": "cv_text",
              "type": "string",
              "value": "={{ $json.text }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "da50a5a9-a727-45f9-b07c-e75844f89d45",
      "name": "求人情報取得",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        448,
        304
      ],
      "parameters": {
        "url": "={{ $(' Webhook - CV Optimizer Form').item.json.body.job_url }}",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "405c1c1d-afa1-4b9e-a595-a7eef3772303",
      "name": "履歴書 + 求人データ統合",
      "type": "n8n-nodes-base.merge",
      "position": [
        896,
        368
      ],
      "parameters": {
        "mode": "combine",
        "options": {},
        "combineBy": "combineByPosition"
      },
      "typeVersion": 3.2
    },
    {
      "id": "f7e1ebf8-5e4e-48b8-a384-d88f53d771bb",
      "name": "Gemini Model - Primary",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1120,
        592
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "googlePalmApi": {
          "id": "qQGrvqnSPqWFH6I6",
          "name": "Google Gemini(PaLM) Api account 5"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "cf43c082-b2ae-42e0-8d3d-83db4a4d9f9d",
      "name": "AI JSON 出力解析",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        1248,
        592
      ],
      "parameters": {
        "autoFix": true,
        "jsonSchemaExample": "{\n  \"job_title\": \"Frontend Developer (React)\",\n  \"location\": \"Helsinki, Finland\",\n  \"fit_summary\": \"The candidate has solid React, TypeScript, and JavaScript experience, supported by practical work on full-stack applications. They also demonstrate CI/CD knowledge and testing skills (Cypress, Jest), which align well with the role. However, the CV does not explicitly highlight advanced CSS frameworks or accessibility practices that are emphasized in the job description.\",\n  \"recommendation\": \"Consider\",\n  \"fit_score\": 7,\n  \"missing_critical\": [\n    \"Advanced CSS framework experience (e.g., Tailwind, Material UI)\",\n    \"Accessibility (WCAG) best practices\"\n  ],\n  \"cv_optimization\": \"Add a section highlighting hands-on experience with CSS frameworks (Tailwind, Material UI) and accessibility best practices (WCAG). Include concrete project examples that demonstrate user-focused design and frontend performance improvements.\",\n  \"final_recommendation\": \" The candidate is a good potential match but should strengthen their CV by explicitly mentioning CSS framework expertise and accessibility knowledge to move from 'Consider' to a stronger 'Apply'.\"\n}"
      },
      "typeVersion": 1.3
    },
    {
      "id": "51bd8f61-dea2-4763-beb3-d0171ca55660",
      "name": "Gemini Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1328,
        800
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "googlePalmApi": {
          "id": "qQGrvqnSPqWFH6I6",
          "name": "Google Gemini(PaLM) Api account 5"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "a0bbfaab-6717-4a88-9766-97d70dec3f03",
      "name": "付箋",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -224,
        -304
      ],
      "parameters": {
        "width": 512,
        "height": 272,
        "content": "## AI CV Optimizer: Match Your CV to Job Descriptions with AI\n\nThis workflow uses AI to automatically analyze a candidate’s CV against any job posting. It extracts key skills, requirements, and gaps, then generates a clear fit summary, recommendations, and optimization tips. Candidates also receive a structured email report, helping them improve their CV and focus on the right roles.\n\nNo more guesswork, the workflow delivers objective. \n### AI-powered career insights in minutes."
      },
      "typeVersion": 1
    },
    {
      "id": "91fb8dbc-2126-47dc-a4ae-a42d8b9c4397",
      "name": "付箋1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1152,
        192
      ],
      "parameters": {
        "color": 6,
        "width": 224,
        "content": "### AI - Compare CV with Job\n\nYou can adjust the AI Agent prompt for output schema, scoring, or language.\n"
      },
      "typeVersion": 1
    },
    {
      "id": "0343291b-6da2-4155-9a52-164f4c4ab1d1",
      "name": "付箋2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1088,
        736
      ],
      "parameters": {
        "color": 5,
        "width": 208,
        "height": 112,
        "content": "###  Gemini / AI \nCredentials:  \nUse **Google Gemini/PaLM** credential."
      },
      "typeVersion": 1
    },
    {
      "id": "14e53603-87f5-4d4e-92ef-216eb5917964",
      "name": "付箋5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1584,
        528
      ],
      "parameters": {
        "color": 5,
        "width": 192,
        "height": 96,
        "content": "### Send report \nSend Email\nCredentials: Use **Gmail OAuth2** credential. (required)."
      },
      "typeVersion": 1
    },
    {
      "id": "c05f35ba-eeb9-4752-80ef-23eefbcca0f2",
      "name": "レポート送信",
      "type": "n8n-nodes-base.gmail",
      "position": [
        1616,
        368
      ],
      "webhookId": "ce5d269e-ee40-4c92-9479-e5af8baec199",
      "parameters": {
        "sendTo": "={{ $(' Webhook - CV Optimizer Form').item.json.body.email }}",
        "message": "=<p>Hi,</p>\n\n<p>We’ve analyzed your CV against the job posting for <b>{{ $json.output.job_title }}</b> in <b>{{ $json.output.location }}</b>.</p>\n\n<p><b>Summary:</b><br>\n{{ $json.output.fit_summary }}</p>\n\n<p><b>Critical gaps identified:</b></p>\n<ul>\n  {{ $json.output.missing_critical.map(gap => `<li>${gap}</li>`).join(\"\") }}\n</ul>\n\n<p><b>FinalFit Score:</b> {{ $json.output.fit_score }} / 10 <b> Recommendation: <b/> {{ $json.output.recommendation }}</p>\n<p>\n<b>Tips for improving CV: </b>{{ $json.output.cv_optimization }}\n</p>\n<p><b>AI Advice:</b><br>\n{{ $json.output.final_recommendation }}\n</p>\n\n<p>Best of luck with your applications,<br>AI CV Optimizer</p>",
        "options": {},
        "subject": "=Your CV Review: {{ $json.output.job_title }} in {{ $json.output.location }}"
      },
      "credentials": {
        "gmailOAuth2": {
          "id": "jkKHvU2Pb9X5WJk5",
          "name": "Gmail account"
        }
      },
      "typeVersion": 2.1
    },
    {
      "id": "8918b88f-f90d-4e68-b28b-84dd68ad854a",
      "name": "付箋11",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -16,
        16
      ],
      "parameters": {
        "color": 5,
        "width": 160,
        "height": 144,
        "content": "### Submission form\n**POST (required)**\n- `Upload CV`\n- `Job Link` \n- `email` "
      },
      "typeVersion": 1
    },
    {
      "id": "03491b28-4df7-4be4-88b1-4128e92fe9b7",
      "name": "AI履歴書分析",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        1152,
        368
      ],
      "parameters": {
        "text": "=CV:\n{{ $json[\"cv_text\"] ? $json[\"cv_text\"].slice(0, 18000) : \"\" }}\n\nJOB:\n{{ $json[\"job_text\"] ? $json[\"job_text\"].slice(0, 18000) : \"\" }}\n\nTasks:\n1) Extract the \"job_title\" and \"location\".  \n2) Identify \"matched_skills\" and \"missing_critical\" skills.  \n3) Write a short \"advice\" paragraph (max 100 words).  \n4) Write a friendly \"email_body\" addressed to the candidate, summarizing:\n   - Job title & location  \n   - What they already match well  \n   - Areas to improve or learn for better fit  \n   - A motivating closing sentence \n5)5) Write a short final_recommendation paragraph.\n\n6) Provide **two recommendations**:  \n   - \"recommendation\": Apply / Consider / Not a fit (must align with fit_score)  \n   - \"cv_optimization\": Clear advice on how to improve the CV for similar roles.  \n6) The \"fit_score\" must always align with \"recommendation\":  \n   - Apply → fit_score between 9 and 10  \n   - Consider → fit_score between 7 and 8  \n   - Not a fit → fit_score between 1 and 6  \n\n⚠️ IMPORTANT: Return ONLY valid JSON in this schema:\n{\n  \"job_title\": \"string\",\n  \"location\": \"string\",\n  \"fit_score\": 0,\n  \"recommendation\": \"Apply|Consider|Not a fit\",\n\"final_recommendation\": [\"string\"],\n  \"matched_skills\": [\"string\"],\n  \"missing_critical\": [\"string\"],\n  \"advice\": \"string\",\n  \"cv_optimization\": \"string\",\n  \"email_body\": \"string\"\n}",
        "options": {
          "systemMessage": "You are a professional career assistant.  \nYour task is to compare a candidate’s CV with a job description and return a structured JSON output.  \n\n⚠️ RULES:  \n- Follow the schema exactly.  \n- Every field must be included.  \n- All values must be plain text, arrays, or integers — never nested objects.  \n- `fit_score` must be an integer (1–10) aligned with `recommendation`:  \n   - \"Apply\" → 9–10  \n   - \"Consider\" → 7–8  \n   - \"Not a fit\" → 1–6  \n- Do not add responsibilities, requirements, or benefits.  \n- Do not include any text outside the JSON.  \n\nSchema:\n{\n  \"job_title\": \"string\",\n  \"location\": \"string\",\n  \"fit_score\": 0,\n  \"recommendation\": \"Apply|Consider|Not a fit\",\n  \"matched_skills\": [\"string\"],\n  \"missing_critical\": [\"string\"],\n  \"advice\": \"string\",\n  \"cv_optimization\": \"string\",\n  \"email_body\": \"string\",\n\"final_recommendation\": : \"string\",\n\n}"
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 2.2
    },
    {
      "id": "798f0b85-bd22-4ad8-a9c3-a3535d955069",
      "name": "求人テキストクリーナー",
      "type": "n8n-nodes-base.code",
      "position": [
        672,
        304
      ],
      "parameters": {
        "jsCode": "const raw = $json.data || \"\";\nconst text = raw\n  .replace(/<script[\\s\\S]*?<\\/script>/gi, \"\")\n  .replace(/<style[\\s\\S]*?<\\/style>/gi, \"\")\n  .replace(/<\\/?[^>]+(>|$)/g, \" \")\n  .replace(/\\s+/g, \" \")\n  .trim();\nreturn [{ job_text: text }];"
      },
      "typeVersion": 2
    },
    {
      "id": "eef4754b-adb0-4859-93df-cfc361f8175c",
      "name": "付箋3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        384,
        -304
      ],
      "parameters": {
        "color": 2,
        "width": 304,
        "height": 144,
        "content": "## Customization checklist\n✅ Update Webhook URL\n✅ Configure Google Gemini credentials\n✅ Set Gmail OAuth2 credentials\n✅ Adjust AI prompt if schema changes"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "039ce290-aa42-4e4a-a346-65841445a6a6",
  "connections": {
    "51bd8f61-dea2-4763-beb3-d0171ca55660": {
      "ai_languageModel": [
        [
          {
            "node": "cf43c082-b2ae-42e0-8d3d-83db4a4d9f9d",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "03491b28-4df7-4be4-88b1-4128e92fe9b7": {
      "main": [
        [
          {
            "node": "c05f35ba-eeb9-4752-80ef-23eefbcca0f2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "75eb814c-8d04-4310-bc01-3fcaf1640634": {
      "main": [
        [
          {
            "node": "da50a5a9-a727-45f9-b07c-e75844f89d45",
            "type": "main",
            "index": 0
          },
          {
            "node": "405c1c1d-afa1-4b9e-a595-a7eef3772303",
            "type": "main",
            "index": 1
          }
        ]
      ]
    },
    "798f0b85-bd22-4ad8-a9c3-a3535d955069": {
      "main": [
        [
          {
            "node": "405c1c1d-afa1-4b9e-a595-a7eef3772303",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "da50a5a9-a727-45f9-b07c-e75844f89d45": {
      "main": [
        [
          {
            "node": "798f0b85-bd22-4ad8-a9c3-a3535d955069",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "405c1c1d-afa1-4b9e-a595-a7eef3772303": {
      "main": [
        [
          {
            "node": "03491b28-4df7-4be4-88b1-4128e92fe9b7",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "cf43c082-b2ae-42e0-8d3d-83db4a4d9f9d": {
      "ai_outputParser": [
        [
          {
            "node": "03491b28-4df7-4be4-88b1-4128e92fe9b7",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "5f221527-5476-49cb-a166-eb3213f5d4a6": {
      "main": [
        [
          {
            "node": "75eb814c-8d04-4310-bc01-3fcaf1640634",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "f7e1ebf8-5e4e-48b8-a384-d88f53d771bb": {
      "ai_languageModel": [
        [
          {
            "node": "03491b28-4df7-4be4-88b1-4128e92fe9b7",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "08a1bb78-33db-4698-9970-c5b38c25835c": {
      "main": [
        [
          {
            "node": "310ffa59-1f26-4ddd-881d-c5819b89d7f1",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "5f221527-5476-49cb-a166-eb3213f5d4a6",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
よくある質問

このワークフローの使い方は?

上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。

このワークフローはどんな場面に適していますか?

上級 - AI要約, マルチモーダルAI

有料ですか?

このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。

ワークフロー情報
難易度
上級
ノード数18
カテゴリー2
ノードタイプ12
難易度説明

上級者向け、16ノード以上の複雑なワークフロー

外部リンク
n8n.ioで表示

このワークフローを共有

カテゴリー

カテゴリー: 34