PRD テストケース
これはDocument Extraction, Multimodal AI分野の自動化ワークフローで、9個のノードを含みます。主にSet, Form, FormTrigger, ApiTemplateIo, ChainLlmなどのノードを使用。 GPT/Claude を使用して製品要件ドキュメントとテスト シナリオを生成し、PDF にエクスポートします。
- •特別な前提条件なし、インポートしてすぐに使用可能
{
"id": "Dg9akaNziOBwgNu0",
"meta": {
"instanceId": "70273a2379644db63ce659827cfd8abac2d0b189210eafa02dd5376e3a62cd1d",
"templateCredsSetupCompleted": true
},
"name": "PRD_Testcase",
"tags": [],
"nodes": [
{
"id": "7aa1d0eb-a145-4713-b12c-72d757924ef1",
"name": "OpenRouter Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
"position": [
0,
64
],
"parameters": {
"model": "openai/gpt-4",
"options": {}
},
"credentials": {
"openRouterApi": {
"id": "brVP9oNL9perdfeq",
"name": "learnby-openrouther"
}
},
"typeVersion": 1
},
{
"id": "450b4fb9-26b5-4622-94ca-ca41761137b6",
"name": "OpenRouter Chat Model1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
"position": [
448,
48
],
"parameters": {
"model": "anthropic/claude-3.7-sonnet",
"options": {}
},
"credentials": {
"openRouterApi": {
"id": "brVP9oNL9perdfeq",
"name": "learnby-openrouther"
}
},
"typeVersion": 1
},
{
"id": "bc40e4ea-8bdd-4a60-88c9-aa4167640f08",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
-816,
-368
],
"parameters": {
"width": 480,
"height": 944,
"content": "### 📒 Generate **Product Requirements Document (PRD)** and **test scenarios** form input to PDF with OpenRouter and APITemplate.io\n\nThis workflow generates a **Product Requirements Document (PRD)** and **test scenarios** from structured form inputs. It uses **OpenRouter LLMs (GPT/Claude)** for natural language generation and **APITemplate.io** for PDF export. \n\n## Who’s it for\nThis template is designed for **product managers, business analysts, QA teams, and startup founders** who need to quickly create **Product Requirement Documents (PRDs)** and **test cases** from structured inputs. \n\n## How it works\n1. A **Form Trigger** collects key product details (name, overview, audience, goals, requirements). \n2. The **LLM Chain (OpenRouter GPT/Claude)** generates a professional, structured **PRD in Markdown format**. \n3. A second **LLM Chain** creates **test scenarios and Gherkin-style test cases** based on the PRD. \n4. Data is cleaned and merged using a **Set node**. \n5. The workflow sends the formatted document to **APITemplate.io** to generate a polished **PDF**. \n6. Finally, the workflow returns the PDF via a **Form Completion node** for easy download. \n \n\n## ⚡ Requirements\n- OpenRouter API Key (or any LLM)\n- APITemplate.io account \n\n## 🎯 Use cases\n- Rapid PRD drafting for startups. \n- QA teams generating **test scenarios** automatically. \n- Standardized documentation workflows. \n\n👉 Customize by editing prompts, PDF templates, or extending with integrations (Slack, Notion, Confluence). \n"
},
"typeVersion": 1
},
{
"id": "4c5c5daa-2ec9-451e-a827-b1d4cb21aecf",
"name": "PRD LLM チェーン",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
0,
-192
],
"parameters": {
"text": "=Product Name - {{ $json['Product Name'] || 'Not Available'}}\nProduct Overview - {{ $json['Product Overview'] || 'Not Available' }}\nTarget Audience - {{ $json['Target Audience'] || 'Not Available' }}\nGoal & Objective - {{ $json['Goals & Objectives'] || 'Not Available' }}\nFunctional Requirements - {{ $json['Functional Requirements'] || 'Not Available' }}\nDate: {{ $json.submittedAt.split(\"T\")[0] }}\nCreated By - {{ $json['Created By'] || 'Not Available' }}",
"batching": {},
"messages": {
"messageValues": [
{
"message": "=You are an expert product manager and technical writer. \nYour task is to generate a clear, structured **Product Requirements Document (PRD)** in **Markdown format**. \nThe PRD should be professional, concise, and easy to share with engineers, designers, and stakeholders. \n\nUse Information provided by User prompt to Understand the requirement and try to go deep in filing all section.\n\n### Formatting Rules\n- Use proper Markdown headers (`#`, `##`, `###`) for sections. \n- Use bullet points or numbered lists where appropriate. \n- Keep language clear and action-oriented. \n- Do not include explanations of what a PRD is.\n\n### PRD Template\n# Product Requirements Document (PRD)\n\n## 1. Overview\n- **Project Name:** \n- **Document Owner:** (leave blank if not provided)\n- **Last Updated:** (user created date provided by user)\n\n## 2. Problem Statement\n\n## 3. Goals\n\n## 4. Non-Goals\n- (list if provided, else mark as “N/A”)\n\n## 5. Target Audience / Users\n - Pain Points Solved:\n\n## 6. Key Features / Requirements\n -Primary Users:\n -Secondary Users:\n - (expand if needed)\n\n## 7. Key Features\n(expand if missing)\n\n## 8. Functional Requirements\n(expand if missing)\n\n## 8. Technical Constraints\n(expand if missing)\n\n## 9. Success Metrics\n- (expand if missing)\n\n## 10. Risks & Assumptions\n\n---\n"
}
]
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "b6f3b365-d277-4917-bb39-6c44a3c9d29b",
"name": "Test Case LLM チェーン",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
448,
-192
],
"parameters": {
"text": "={{ $json.text }}",
"batching": {},
"messages": {
"messageValues": [
{
"message": "Using the user input PRD document create Test scenario and test case in gherkin language. "
}
]
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "dba5e475-96b8-4505-96bb-ec736af91aa9",
"name": "Get User Input",
"type": "n8n-nodes-base.formTrigger",
"position": [
-288,
-192
],
"webhookId": "0a0d6c63-a806-4bb8-a9b6-f29c184a59b7",
"parameters": {
"options": {
"appendAttribution": false
},
"formTitle": "Technical Document Requirement",
"formFields": {
"values": [
{
"fieldLabel": "Product Name",
"placeholder": "Fitness Guru"
},
{
"fieldType": "textarea",
"fieldLabel": "Product Overview",
"placeholder": "An app that helps gym-goers track workouts, find classes, and stay motivated",
"requiredField": true
},
{
"fieldLabel": "Target Audience",
"placeholder": "gym members, personal trainers, gym owners"
},
{
"fieldLabel": "Goals & Objectives",
"placeholder": "Increase gym member engagement, streamline trainer-client interaction"
},
{
"fieldLabel": "Functional Requirements",
"placeholder": "Workout logging → select exercise → enter sets/reps → save → progress updates on dashboard."
}
]
},
"responseMode": "lastNode"
},
"typeVersion": 2.2
},
{
"id": "df78c5c0-2394-4fc4-b04b-da34bd07b7db",
"name": "マージ PRD and Test Case",
"type": "n8n-nodes-base.set",
"position": [
832,
-192
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "afee93c8-7b59-40b8-975a-55e4a3c9d35a",
"name": "text",
"type": "string",
"value": "={{ $('PRD LLM Chain').item.json.text }}\n{{ $json.text }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "2352e0ea-0f51-4b62-9dd1-b7af7a2a1628",
"name": "Create Document in PDF",
"type": "n8n-nodes-base.apiTemplateIo",
"position": [
1040,
-192
],
"parameters": {
"options": {
"fileName": "PRD_abc.pdf"
},
"download": true,
"resource": "pdf",
"propertiesUi": {
"propertyValues": [
{
"key": "markdown",
"value": "={{ $json.text }}"
}
]
},
"pdfTemplateId": "=e1277b23d41c334e"
},
"credentials": {
"apiTemplateIoApi": {
"id": "wve3UL6j52R45XJI",
"name": "learnbyalok_APITemplate.io account"
}
},
"typeVersion": 1
},
{
"id": "c1b7dcee-035e-46f3-8cfc-985cc7920839",
"name": "Let User Download",
"type": "n8n-nodes-base.form",
"position": [
1280,
-192
],
"webhookId": "a3e6b03b-d6a8-4390-9884-bfe08fb8cebd",
"parameters": {
"options": {},
"operation": "completion",
"respondWith": "returnBinary",
"completionTitle": "PRD Document is ready",
"completionMessage": "Process completed file will be downloaded! ",
"inputDataFieldName": "=data"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "a11c8289-d0f2-430d-995b-004ea59f10d9",
"connections": {
"PRD LLM Chain": {
"main": [
[
{
"node": "Test Case LLM Chain",
"type": "main",
"index": 0
}
]
]
},
"dba5e475-96b8-4505-96bb-ec736af91aa9": {
"main": [
[
{
"node": "PRD LLM Chain",
"type": "main",
"index": 0
}
]
]
},
"c1b7dcee-035e-46f3-8cfc-985cc7920839": {
"main": [
[]
]
},
"Test Case LLM Chain": {
"main": [
[
{
"node": "Merge PRD and Test Case",
"type": "main",
"index": 0
}
]
]
},
"7aa1d0eb-a145-4713-b12c-72d757924ef1": {
"ai_languageModel": [
[
{
"node": "PRD LLM Chain",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"2352e0ea-0f51-4b62-9dd1-b7af7a2a1628": {
"main": [
[
{
"node": "c1b7dcee-035e-46f3-8cfc-985cc7920839",
"type": "main",
"index": 0
}
]
]
},
"450b4fb9-26b5-4622-94ca-ca41761137b6": {
"ai_languageModel": [
[
{
"node": "Test Case LLM Chain",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Merge PRD and Test Case": {
"main": [
[
{
"node": "2352e0ea-0f51-4b62-9dd1-b7af7a2a1628",
"type": "main",
"index": 0
}
]
]
}
}
}このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
中級 - 文書抽出, マルチモーダルAI
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
Alok Kumar
@alokkumarI am a Principal Software Engineer based in Ireland with a deep passion for AI and emerging technologies. With extensive experience in designing and implementing scalable software solutions, I focus on leveraging artificial intelligence to solve real-world problems. I enjoy exploring innovative applications of AI, from intelligent automation to data-driven insights, and I’m dedicated to building systems that are both efficient and impactful.
このワークフローを共有