23 顧客生涯価値(CLV)を分析する

上級

これはMarket Research, AI Summarization分野の自動化ワークフローで、20個のノードを含みます。主にIf, Set, Code, Gmail, McpClientToolなどのノードを使用。 Bright Data MCPを使ってGPT-4で高値顧客を分析し、特定する

前提条件
  • Googleアカウント + Gmail API認証情報
  • OpenAI API Key

カテゴリー

ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
  "id": "wIBHF1QNYzvZZHta",
  "meta": {
    "instanceId": "60046904b104f0f72b2629a9d88fe9f676be4035769f1f08dad1dd38a76b9480",
    "templateCredsSetupCompleted": true
  },
  "name": "23 Analyze Customer Lifetime Value",
  "tags": [],
  "nodes": [
    {
      "id": "a73dd3f9-4d76-46ba-b4bc-9c7035109825",
      "name": "月次オファーキャンペーン実行",
      "type": "n8n-nodes-base.scheduleTrigger",
      "position": [
        0,
        0
      ],
      "parameters": {
        "rule": {
          "interval": [
            {
              "field": "months",
              "triggerAtHour": 9
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "8b11a03a-71da-4d82-8891-084adcddfd77",
      "name": "顧客履歴URL設定",
      "type": "n8n-nodes-base.set",
      "position": [
        200,
        0
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "b366b00a-ad35-46ab-9722-6478ded6ec91",
              "name": "customer data url",
              "type": "string",
              "value": "example.com"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "b1f84ba5-90f9-4483-968e-67df657a1936",
      "name": "顧客プロファイル&注文履歴収集(エージェント)",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        480,
        0
      ],
      "parameters": {
        "text": "=scrape the customer history url below and extract the key information:\n{{ $json['customer data url'] }}",
        "options": {},
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 2
    },
    {
      "id": "5aced094-ac88-4033-8a9b-dfc7b1457a6d",
      "name": "Bright Data MCP Scraper",
      "type": "n8n-nodes-mcp.mcpClientTool",
      "position": [
        640,
        280
      ],
      "parameters": {
        "toolName": "scrape_as_markdown",
        "operation": "executeTool",
        "toolParameters": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Tool_Parameters', ``, 'json') }}"
      },
      "credentials": {
        "mcpClientApi": {
          "id": "eqq94k789oJCd6jU",
          "name": "MCP Client (STDIO) account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "ef9b75c8-1ec6-43ca-9969-909146214422",
      "name": "AIアシスタント",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        440,
        280
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8sEyPDkC5p4w4Jha",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "2d7909b4-333c-46cc-9909-5df7fe9bdeb6",
      "name": "顧客情報フォーマット",
      "type": "n8n-nodes-base.code",
      "position": [
        900,
        0
      ],
      "parameters": {
        "jsCode": "// Get the array inside the 'output' key\nconst customers = items[0].json.output;\n\n// Map each customer to a separate item\nreturn customers.map(customer => {\n  return { json: customer };\n});\n"
      },
      "typeVersion": 2
    },
    {
      "id": "8d562c3e-2e0c-4ba8-8dbe-a89a23ba913b",
      "name": "顧客注文履歴取得",
      "type": "n8n-nodes-base.code",
      "position": [
        1100,
        0
      ],
      "parameters": {
        "jsCode": "// Loop through all incoming customers\nconst output = [];\n\nfor (const item of items) {\n  const customerName = item.json.customer_name;\n  const customerEmail = item.json.customer_email;  // Added email extraction\n  const orders = item.json.orders;\n\n  for (const order of orders) {\n    output.push({\n      json: {\n        customer_name: customerName,\n        customer_email: customerEmail,  // Added email in output\n        amount: order.amount,\n        date: order.date\n      }\n    });\n  }\n}\n\nreturn output;\n"
      },
      "typeVersion": 2
    },
    {
      "id": "02a09456-b359-4989-99b5-c830e9d6ca2a",
      "name": "高価値顧客判定",
      "type": "n8n-nodes-base.if",
      "position": [
        1360,
        0
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "6725053f-eae9-422c-942d-c82279482697",
              "operator": {
                "type": "number",
                "operation": "gte"
              },
              "leftValue": "={{ $json.amount }}",
              "rightValue": 200
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "9a0b0647-1341-4159-b639-5b3581548d74",
      "name": "特別オファーメール送信",
      "type": "n8n-nodes-base.gmail",
      "position": [
        1580,
        -100
      ],
      "webhookId": "f2c94a4c-06f0-43a0-81db-8c728ef0de2f",
      "parameters": {
        "sendTo": "={{ $json.customer_email }}",
        "message": "write any offer",
        "options": {},
        "subject": "Offer for being out ideal customer"
      },
      "credentials": {
        "gmailOAuth2": {
          "id": "AQDSl75AdzK3vmqJ",
          "name": "Gmail account"
        }
      },
      "typeVersion": 2.1
    },
    {
      "id": "3d73fb01-ab20-4be2-97c7-c21d5c95b45f",
      "name": "低価値顧客無視",
      "type": "n8n-nodes-base.noOp",
      "position": [
        1580,
        100
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "7f81c4d2-d406-4d58-956e-78bca5a8f861",
      "name": "付箋",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -40,
        -1020
      ],
      "parameters": {
        "color": 2,
        "width": 400,
        "height": 1200,
        "content": "## 🔁 **Section 1: Schedule & Input Setup**\n\n### 🧱 Nodes:\n\n* **🕒 `Run Offer Campaign Daily`**\n* **✏️ `Set Admin Dashboard URL`**\n\n### 📖 What Happens Here:\n\nThis section **initiates the workflow on a regular schedule** (daily, weekly, etc.). It also **sets the URL** of the **admin dashboard** where your customer data is stored.\n\n💡 **Beginner Tip:**\nThis is your starting point. You don't need to manually run the workflow every time — just schedule it, and it will run automatically using the trigger.\n\n✅ **Why it’s useful:**\nYou can run this process daily or weekly to find customers who deserve promotional offers, all on autopilot!\n\n---\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "de0d7ee1-b627-4f17-b03e-4076b09166a9",
      "name": "付箋1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        440,
        -900
      ],
      "parameters": {
        "color": 3,
        "width": 340,
        "height": 1080,
        "content": "## 🤖 **Section 2: Scraping Customer Data with Agent**\n\n### 🧱 Nodes:\n\n* **🤖 `Scrape Customer Profiles & Orders (Agent)`**\n\n  * ⚙️ **`AI Assistant (OpenAI Chat Model)`**\n  * 🌐 **`Bright Data MCP Scraper`**\n  * 🧾 **`Format Agent Output (Structured Output Parser)`**\n\n### 📖 What Happens Here:\n\nThe **AI Agent** (powered by OpenAI and Bright Data MCP) accesses your dashboard and scrapes:\n\n* 📇 **Customer profiles**\n* 🛒 **Their purchase/order history**\n\nThe **Structured Output Parser** then **cleans up and organizes** this data into a format that other nodes can use.\n\n💡 **Beginner Tip:**\nThis is like a smart assistant that goes to your admin dashboard, collects important info, and makes sure it’s readable for the next steps.\n\n✅ **Why it’s useful:**\nEven if the data is messy or complex on the dashboard, this section makes sure it’s clean and ready to use in your automation.\n\n---\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "9f5db009-9461-4937-8c88-d55bf47bfe2c",
      "name": "付箋2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        860,
        -760
      ],
      "parameters": {
        "color": 5,
        "width": 360,
        "height": 940,
        "content": "## 🧩 **Section 3: Data Formatting & Order Extraction**\n\n### 🧱 Nodes:\n\n* **🔧 `Format Customer Info`**\n* **📦 `Get Customer Order History`**\n\n### 📖 What Happens Here:\n\nThese function nodes further **organize and process the scraped data**:\n\n* The first node extracts key customer details like name, email, and ID.\n* The second node focuses on their **order data** — how many items they bought, total amount spent, etc.\n\n💡 **Beginner Tip:**\nThink of this as organizing data into two folders: 🧍‍♂️ “Customer Info” and 📊 “Purchase Data”.\n\n✅ **Why it’s useful:**\nClean separation of data means better targeting. You'll know exactly **who** bought **what**, and **how much** they spent — perfect for personalized offers!\n\n---\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "a46e5710-fb85-46d6-addd-211994597386",
      "name": "付箋3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1320,
        -740
      ],
      "parameters": {
        "color": 6,
        "width": 380,
        "height": 1000,
        "content": "## 🎯 **Section 4: Offer Decision & Action**\n\n### 🧱 Nodes:\n\n* **💰 `Is Customer High-Value?`**\n* **📧 `Send Special Offer Email`**\n* **➡️ `Ignore Low-Value Customers`**\n\n### 📖 What Happens Here:\n\nThis section **decides what action to take**:\n\n* The \"High Value Check\" compares a customer’s total spending against a fixed threshold.\n* If their spending is **high enough**, they get a personalized **offer email** via Gmail.\n* If not, they’re simply **skipped** — no email is sent.\n\n💡 **Beginner Tip:**\nYou don’t want to send offers to everyone. This smart filter ensures **only loyal/high-value customers** get incentives.\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "e32fb60f-390a-4f16-9b81-6b82fda08328",
      "name": "付箋5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1820,
        -740
      ],
      "parameters": {
        "color": 7,
        "width": 380,
        "height": 240,
        "content": "## I’ll receive a tiny commission if you join Bright Data through this link—thanks for fueling more free content!\n\n### https://get.brightdata.com/1tndi4600b25"
      },
      "typeVersion": 1
    },
    {
      "id": "a31f7eec-c104-4631-86f3-523e68aab57b",
      "name": "付箋9",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1780,
        -1040
      ],
      "parameters": {
        "color": 4,
        "width": 1300,
        "height": 320,
        "content": "=======================================\n            WORKFLOW ASSISTANCE\n=======================================\nFor any questions or support, please contact:\n    Yaron@nofluff.online\n\nExplore more tips and tutorials here:\n   - YouTube: https://www.youtube.com/@YaronBeen/videos\n   - LinkedIn: https://www.linkedin.com/in/yaronbeen/\n=======================================\n"
      },
      "typeVersion": 1
    },
    {
      "id": "0f4db4d3-102f-4c2c-a456-42bd14e95a76",
      "name": "付箋4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1780,
        -700
      ],
      "parameters": {
        "color": 4,
        "width": 1289,
        "height": 2758,
        "content": "# 🎯 **Automated High-Value Customer Targeting & Offer Campaign**\n\n### *Smartly scrape, segment, and send personalized offers — all without lifting a finger.*\n\n---\n\n## 🔁 **Section 1: Schedule & Input Setup**\n\n### 🧱 Nodes:\n\n* **🕒 `Run Offer Campaign Daily`**\n* **✏️ `Set Admin Dashboard URL`**\n\n### 📖 What Happens Here:\n\nThis section **initiates the workflow on a regular schedule** (daily, weekly, etc.). It also **sets the URL** of the **admin dashboard** where your customer data is stored.\n\n💡 **Beginner Tip:**\nThis is your starting point. You don't need to manually run the workflow every time — just schedule it, and it will run automatically using the trigger.\n\n✅ **Why it’s useful:**\nYou can run this process daily or weekly to find customers who deserve promotional offers, all on autopilot!\n\n---\n\n## 🤖 **Section 2: Scraping Customer Data with Agent**\n\n### 🧱 Nodes:\n\n* **🤖 `Scrape Customer Profiles & Orders (Agent)`**\n\n  * ⚙️ **`AI Assistant (OpenAI Chat Model)`**\n  * 🌐 **`Bright Data MCP Scraper`**\n  * 🧾 **`Format Agent Output (Structured Output Parser)`**\n\n### 📖 What Happens Here:\n\nThe **AI Agent** (powered by OpenAI and Bright Data MCP) accesses your dashboard and scrapes:\n\n* 📇 **Customer profiles**\n* 🛒 **Their purchase/order history**\n\nThe **Structured Output Parser** then **cleans up and organizes** this data into a format that other nodes can use.\n\n💡 **Beginner Tip:**\nThis is like a smart assistant that goes to your admin dashboard, collects important info, and makes sure it’s readable for the next steps.\n\n✅ **Why it’s useful:**\nEven if the data is messy or complex on the dashboard, this section makes sure it’s clean and ready to use in your automation.\n\n---\n\n## 🧩 **Section 3: Data Formatting & Order Extraction**\n\n### 🧱 Nodes:\n\n* **🔧 `Format Customer Info`**\n* **📦 `Get Customer Order History`**\n\n### 📖 What Happens Here:\n\nThese function nodes further **organize and process the scraped data**:\n\n* The first node extracts key customer details like name, email, and ID.\n* The second node focuses on their **order data** — how many items they bought, total amount spent, etc.\n\n💡 **Beginner Tip:**\nThink of this as organizing data into two folders: 🧍‍♂️ “Customer Info” and 📊 “Purchase Data”.\n\n✅ **Why it’s useful:**\nClean separation of data means better targeting. You'll know exactly **who** bought **what**, and **how much** they spent — perfect for personalized offers!\n\n---\n\n## 🎯 **Section 4: Offer Decision & Action**\n\n### 🧱 Nodes:\n\n* **💰 `Is Customer High-Value?`**\n* **📧 `Send Special Offer Email`**\n* **➡️ `Ignore Low-Value Customers`**\n\n### 📖 What Happens Here:\n\nThis section **decides what action to take**:\n\n* The \"High Value Check\" compares a customer’s total spending against a fixed threshold.\n* If their spending is **high enough**, they get a personalized **offer email** via Gmail.\n* If not, they’re simply **skipped** — no email is sent.\n\n💡 **Beginner Tip:**\nYou don’t want to send offers to everyone. This smart filter ensures **only loyal/high-value customers** get incentives.\n\n✅ **Why it’s useful:**\nIt automates your **customer segmentation** and **email marketing**, saving you time while targeting the right people to boost sales.\n\n---\n\n## 🎉 Final Thoughts\n\nThis workflow is a **powerful marketing automation tool**. Here's what it empowers you to do:\n\n* ⏰ Run promotions on autopilot\n* 🧠 Use AI and proxies to collect data\n* 🧹 Organize complex customer records\n* 🎯 Only target the most valuable users\n* 📈 Increase conversion rates with personalized emails\n\n---\n\n"
      },
      "typeVersion": 1
    },
    {
      "id": "e7eec1fb-1a84-44be-8b8c-ab6fa4acbc1c",
      "name": "Auto-fixing Output Parser",
      "type": "@n8n/n8n-nodes-langchain.outputParserAutofixing",
      "position": [
        780,
        280
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "3e4a7bfa-5ba6-4abb-8dac-72eeee8263a4",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        760,
        500
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4o-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8sEyPDkC5p4w4Jha",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "6ba75ee7-46ea-4388-b5c2-b5ab2d4aecc1",
      "name": "Structured Output Parser",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        920,
        500
      ],
      "parameters": {
        "jsonSchemaExample": "[\n  {\n    \"customer_name\": \"John Doe\",\n    \"orders\": [\n      {\n        \"amount\": 120,\n        \"date\": \"2024-05-10\"\n      },\n      {\n        \"amount\": 80,\n        \"date\": \"2024-06-15\"\n      }\n    ]\n  },\n  {\n    \"customer_name\": \"Jane Smith\",\n    \"orders\": [\n      {\n        \"amount\": 200,\n        \"date\": \"2024-04-05\"\n      },\n      {\n        \"amount\": 150,\n        \"date\": \"2024-05-01\"\n      },\n      {\n        \"amount\": 180,\n        \"date\": \"2024-06-10\"\n      }\n    ]\n  },\n  {\n    \"customer_name\": \"Michael Johnson\",\n    \"orders\": [\n      {\n        \"amount\": 600,\n        \"date\": \"2024-07-01\"\n      }\n    ]\n  }\n]\n"
      },
      "typeVersion": 1.2
    }
  ],
  "active": false,
  "pinData": {
    "Scrape Customer Profiles & Orders (Agent)": [
      {
        "json": {
          "output": [
            {
              "orders": [
                {
                  "date": "2024-05-10",
                  "amount": 120
                },
                {
                  "date": "2024-06-15",
                  "amount": 80
                }
              ],
              "customer_name": "John Doe",
              "customer_email": "johndoe@gmail.com"
            },
            {
              "orders": [
                {
                  "date": "2024-04-05",
                  "amount": 200
                },
                {
                  "date": "2024-05-01",
                  "amount": 150
                },
                {
                  "date": "2024-06-10",
                  "amount": 180
                }
              ],
              "customer_name": "Jane Smith",
              "customer_email": "johnsmith@gmail.com"
            },
            {
              "orders": [
                {
                  "date": "2024-07-01",
                  "amount": 600
                }
              ],
              "customer_name": "Michael Johnson",
              "customer_email": "michael@gmail.com"
            }
          ]
        }
      }
    ]
  },
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "f2ffb3ba-6efc-493d-93c6-6a2e99e8c2d8",
  "connections": {
    "ef9b75c8-1ec6-43ca-9969-909146214422": {
      "ai_languageModel": [
        [
          {
            "node": "b1f84ba5-90f9-4483-968e-67df657a1936",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "3e4a7bfa-5ba6-4abb-8dac-72eeee8263a4": {
      "ai_languageModel": [
        [
          {
            "node": "e7eec1fb-1a84-44be-8b8c-ab6fa4acbc1c",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "2d7909b4-333c-46cc-9909-5df7fe9bdeb6": {
      "main": [
        [
          {
            "node": "8d562c3e-2e0c-4ba8-8dbe-a89a23ba913b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "5aced094-ac88-4033-8a9b-dfc7b1457a6d": {
      "ai_tool": [
        [
          {
            "node": "b1f84ba5-90f9-4483-968e-67df657a1936",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "02a09456-b359-4989-99b5-c830e9d6ca2a": {
      "main": [
        [
          {
            "node": "9a0b0647-1341-4159-b639-5b3581548d74",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "3d73fb01-ab20-4be2-97c7-c21d5c95b45f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8b11a03a-71da-4d82-8891-084adcddfd77": {
      "main": [
        [
          {
            "node": "b1f84ba5-90f9-4483-968e-67df657a1936",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "6ba75ee7-46ea-4388-b5c2-b5ab2d4aecc1": {
      "ai_outputParser": [
        [
          {
            "node": "e7eec1fb-1a84-44be-8b8c-ab6fa4acbc1c",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "e7eec1fb-1a84-44be-8b8c-ab6fa4acbc1c": {
      "ai_outputParser": [
        [
          {
            "node": "b1f84ba5-90f9-4483-968e-67df657a1936",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "8d562c3e-2e0c-4ba8-8dbe-a89a23ba913b": {
      "main": [
        [
          {
            "node": "02a09456-b359-4989-99b5-c830e9d6ca2a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "a73dd3f9-4d76-46ba-b4bc-9c7035109825": {
      "main": [
        [
          {
            "node": "8b11a03a-71da-4d82-8891-084adcddfd77",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b1f84ba5-90f9-4483-968e-67df657a1936": {
      "main": [
        [
          {
            "node": "2d7909b4-333c-46cc-9909-5df7fe9bdeb6",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
よくある質問

このワークフローの使い方は?

上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。

このワークフローはどんな場面に適していますか?

上級 - 市場調査, AI要約

有料ですか?

このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。

ワークフロー情報
難易度
上級
ノード数20
カテゴリー2
ノードタイプ12
難易度説明

上級者向け、16ノード以上の複雑なワークフロー

作成者
Yaron Been

Yaron Been

@yaron-nofluff

Building AI Agents and Automations | Growth Marketer | Entrepreneur | Book Author & Podcast Host If you need any help with Automations, feel free to reach out via linkedin: https://www.linkedin.com/in/yaronbeen/ And check out my Youtube channel: https://www.youtube.com/@YaronBeen/videos

外部リンク
n8n.ioで表示

このワークフローを共有

カテゴリー

カテゴリー: 34