自動化された毎日の顧客回復活動と AI オファー

上級

これはSupport, AI, Marketing分野の自動化ワークフローで、17個のノードを含みます。主にIf, Set, Gmail, Filter, GoogleSheetsなどのノードを使用、AI技術を活用したスマート自動化を実現。 AI併用による毎日の顧客挽回活動の自動化

前提条件
  • Googleアカウント + Gmail API認証情報
  • Google Sheets API認証情報
  • Google Gemini API Key
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
  "meta": {
    "instanceId": "02e782574ebb30fbddb2c3fd832c946466d718819d25f6fe4b920124ff3fc2c1",
    "templateCredsSetupCompleted": true
  },
  "nodes": [
    {
      "id": "13f8de57-7247-4be1-8fc4-dddc1a7d677e",
      "name": "スケジュール開始: 日次離反チェック",
      "type": "n8n-nodes-base.scheduleTrigger",
      "position": [
        160,
        0
      ],
      "parameters": {
        "rule": {
          "interval": [
            {}
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "8f52666a-7247-4058-a775-2be80e3b4c0e",
      "name": "シートから顧客データを取得",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        440,
        0
      ],
      "parameters": {
        "options": {
          "returnFirstMatch": false
        },
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": 1698897552,
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1hG2NMi-4fMa7D5qGonCN8bsYVya4L2TOB_8mI4XK-9k/edit#gid=1698897552",
          "cachedResultName": "Customer Data"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "1hG2NMi-4fMa7D5qGonCN8bsYVya4L2TOB_8mI4XK-9k",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1hG2NMi-4fMa7D5qGonCN8bsYVya4L2TOB_8mI4XK-9k/edit?usp=drivesdk",
          "cachedResultName": "Medium Post Automation"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "VV5AyFvgYkc4TfC7",
          "name": "Onur Drive "
        }
      },
      "typeVersion": 4.5
    },
    {
      "id": "37951981-3c3d-4434-8782-51e9129f0bbc",
      "name": "高離反リスク&未キャンペーン顧客をフィルタリング",
      "type": "n8n-nodes-base.filter",
      "position": [
        760,
        0
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "9b78accc-0926-4537-8ce9-70206dd45525",
              "operator": {
                "type": "number",
                "operation": "gt"
              },
              "leftValue": "={{ $json.predicted_churn_score.toNumber() }}",
              "rightValue": 0.7
            }
          ]
        }
      },
      "typeVersion": 2.2,
      "alwaysOutputData": true
    },
    {
      "id": "4152752b-3ba3-4af0-aec8-aba9fc0424d9",
      "name": "対象顧客の有無を確認",
      "type": "n8n-nodes-base.if",
      "position": [
        1140,
        0
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "version": 2,
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "2b03f228-f10c-43c1-90f8-a2ef397d2e0b",
              "operator": {
                "type": "boolean",
                "operation": "false",
                "singleValue": true
              },
              "leftValue": "={{ $json.isEmpty() }}",
              "rightValue": ""
            }
          ]
        }
      },
      "typeVersion": 2.2
    },
    {
      "id": "c1164b8f-4497-4763-bb42-7187e9f2f4d2",
      "name": "各対象顧客を処理",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        1640,
        -320
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 3
    },
    {
      "id": "8896a776-ed5b-431a-908b-663fa8475c77",
      "name": "顧客呼び戻し特典を生成",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        2100,
        -300
      ],
      "parameters": {
        "text": "=",
        "messages": {
          "messageValues": [
            {
              "message": "=\n**You are an AI assistant designed to analyze customer data and determine a win-back offer based on specific churn prediction scores and preferences.**\n\n**Input:** You will receive customer data as a JSON object.\n\n**Task:** Analyze the fields `'predicted_churn_score': {{ $json.predicted_churn_score }}` and `'preferred_categories': \"{{ $json.preferred_categories }}\"` in the input JSON. Apply the following rules to determine the appropriate offer details:\n\n**Rules:**\n\n1. If `predicted_churn_score` is greater than or equal to 0.7 and less than or equal to 0.8:\n\n   * Offer Type: `INFORMATIONAL`\n   * Offer Value: `0`\n   * Offer Title: `Special Advantage on Books Just for You`\n   * Offer Details: Create a message encouraging the customer to explore new products in their preferred categories. To make it more specific, select *one* of the preferred categories and include a *typical product type* from that category.\n     Example: `\"Exciting new [product type, e.g., novels] just arrived in your favorite [Preferred Category Name] category! Check out what's new in your other favorite categories too: [List of Other Preferred Categories]!\"`\n\n2. If `predicted_churn_score` is greater than 0.8 and less than or equal to 0.9:\n\n   * Offer Type: `BONUS_POINTS`\n   * Offer Value: `200`\n   * Offer Title: `Special Advantage on Books Just for You`\n   * Offer Details: Create a message offering 200 bonus points for purchases made specifically in the \"Books\" category.\n     Example: `\"Earn 200 bonus points on your next purchase in the Books category!\"`\n\n3. If `predicted_churn_score` is greater than 0.9 and less than or equal to 1.0:\n\n   * Offer Type: `DISCOUNT_PERCENTAGE`\n   * Offer Value: `20`\n   * Offer Title: `Special Advantage on Books Just for You`\n   * Offer Details: Create a message offering a 20% discount on a future purchase specifically in the \"Books\" category.\n     Example: `\"Enjoy a 20% discount on your next purchase in the Books category!\"`\n\n**Output:** Generate a JSON object that includes the determined offer details. The OUTPUT MUST STRICTLY FOLLOW THE STRUCTURE BELOW and INCLUDE ONLY THE JSON OBJECT. Do not add any other text or explanation.\n\n**Output Structure:**\n\n{\n  \"customer_id\": string, // Customer ID from the input data\n  \"action_taken\": \"SENT_WINBACK_OFFER\", // Action taken: win-back offer sent (constant in this example)\n  \"offer_type\": string, // Offer type: INFORMATIONAL, BONUS_POINTS, or DISCOUNT_PERCENTAGE\n  \"offer_value\": number, // Offer value: 0 (informational), 200 (points), or 20 (discount)\n  \"offer_title\": string, // Message title\n  \"offer_details\": string, // Message in Turkish, created based on rules and preferred categories\n  \"communication_channel\": \"email\", // Communication channel (constant in this example)\n  \"timestamp\": string // Current timestamp in ISO 8601 format (e.g., \"YYYY-MM-DDTHH:mm:ssZ\"). Note: In an actual n8n workflow, you may prefer to add the real timestamp using a separate node or expression after the LLM node.\n}\n\n"
            }
          ]
        },
        "promptType": "define",
        "hasOutputParser": true
      },
      "typeVersion": 1.5
    },
    {
      "id": "b89954e9-7689-47e6-bf15-3089f3863ca9",
      "name": "(特典生成用LLMモデル)",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        2060,
        -120
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-pro-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "BhQsoi2WTmDm0fQ4",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "ee485123-32be-447b-80f3-303e3a046207",
      "name": "(特典 JSON をパース)",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        2260,
        -100
      ],
      "parameters": {
        "jsonSchemaExample": "{\n  \"customer_id\": \"CUST_001\",\n  \"action_taken\": \"SENT_WINBACK_OFFER\",\n  \"offer_type\": \"BONUS_POINTS\",\n  \"offer_value\": 200,\n  \"offer_title\": \"Huge Offer!\",\n  \"offer_details\": \"Get 200 bonus points when you shop in the Kitap category!\",\n  \"communication_channel\": \"email\",\n  \"timestamp\": \"2024-06-08T09:05:00Z\"\n}"
      },
      "typeVersion": 1.2
    },
    {
      "id": "005890c2-f77d-4d0d-add2-496642464a9f",
      "name": "送信済み特典をシステムログに記録",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        2640,
        -220
      ],
      "parameters": {
        "columns": {
          "value": {
            "date": "={{ $json.output.timestamp }}",
            "system_log": "={{ $json.output.action_taken }}",
            "customer_id": "={{ $json.output.customer_id }}"
          },
          "schema": [
            {
              "id": "system_log",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "system_log",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "date",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "date",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "customer_id",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "customer_id",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [
            "system_log"
          ],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "appendOrUpdate",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": 157558698,
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1hG2NMi-4fMa7D5qGonCN8bsYVya4L2TOB_8mI4XK-9k/edit#gid=157558698",
          "cachedResultName": "SYSTEM_LOG"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "1hG2NMi-4fMa7D5qGonCN8bsYVya4L2TOB_8mI4XK-9k",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1hG2NMi-4fMa7D5qGonCN8bsYVya4L2TOB_8mI4XK-9k/edit?usp=drivesdk",
          "cachedResultName": "OnurPolat05 N8N  Db"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "VV5AyFvgYkc4TfC7",
          "name": "Onur Drive "
        }
      },
      "typeVersion": 4.5
    },
    {
      "id": "98295978-21f1-420f-8e9c-4014d53ffb16",
      "name": "顧客呼び戻し特典をメールで送信",
      "type": "n8n-nodes-base.gmail",
      "position": [
        2880,
        -120
      ],
      "webhookId": "3067948c-c6f7-4c77-a91f-fcdb2e0c8095",
      "parameters": {
        "sendTo": "={{ $('Process Each Eligible Customer').item.json.user_mail }}",
        "message": "={{ $json.output.offer_details }}",
        "options": {},
        "subject": "={{ $json.output.offer_title }}",
        "emailType": "text"
      },
      "credentials": {
        "gmailOAuth2": {
          "id": "epBpgOmwmYErJ4pe",
          "name": "Onur Account"
        }
      },
      "typeVersion": 2.1
    },
    {
      "id": "13095156-a54f-432f-8d10-209ddc30680a",
      "name": "'見つかりません'ステータスを設定",
      "type": "n8n-nodes-base.set",
      "position": [
        1620,
        300
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "e42f6e99-487d-4942-a133-879d62b28fe5",
              "name": "system_log",
              "type": "string",
              "value": "NOT_FOUND"
            },
            {
              "id": "4fe0abc3-e685-4ece-bee2-1ae4f6d3ca92",
              "name": "date",
              "type": "string",
              "value": "={{ $now }}"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "1f823726-6483-40c1-b184-eac87886ded5",
      "name": "'見つかりません'をシステムログに記録",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        1940,
        300
      ],
      "parameters": {
        "columns": {
          "value": {
            "date": "={{ $json.date }}",
            "system_log": "={{ $json.system_log }}"
          },
          "schema": [
            {
              "id": "system_log",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "system_log",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            },
            {
              "id": "date",
              "type": "string",
              "display": true,
              "removed": false,
              "required": false,
              "displayName": "date",
              "defaultMatch": false,
              "canBeUsedToMatch": true
            }
          ],
          "mappingMode": "defineBelow",
          "matchingColumns": [
            "system_log"
          ],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "appendOrUpdate",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": 157558698,
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1hG2NMi-4fMa7D5qGonCN8bsYVya4L2TOB_8mI4XK-9k/edit#gid=157558698",
          "cachedResultName": "SYSTEM_LOG"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "1hG2NMi-4fMa7D5qGonCN8bsYVya4L2TOB_8mI4XK-9k",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/1hG2NMi-4fMa7D5qGonCN8bsYVya4L2TOB_8mI4XK-9k/edit?usp=drivesdk",
          "cachedResultName": "OnurPolat05 N8N  Db"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "VV5AyFvgYkc4TfC7",
          "name": "Onur Drive "
        }
      },
      "typeVersion": 4.5
    },
    {
      "id": "c6828c9c-c39f-40b5-9197-1435915d3682",
      "name": "付箋",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        160,
        -340
      ],
      "parameters": {
        "width": 380,
        "height": 300,
        "content": "# 00. Daily Start & Fetch Customer Data\n\n**Purpose:** Automatically triggers the workflow **once daily** based on the schedule set in the first node. It then fetches all customer data from the specified Google Sheet ('Customer Data' sheet) to identify potential churn risks for the day."
      },
      "typeVersion": 1
    },
    {
      "id": "71d3f596-1413-4e97-81eb-ec701f15938d",
      "name": "付箋1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1560,
        540
      ],
      "parameters": {
        "color": 3,
        "width": 540,
        "height": 300,
        "content": "# 03. Handle No Eligible Customers\n\n**Purpose:** This path executes if the initial filter finds *no* customers meeting the win-back criteria during the daily check.\n1.  **Set Status:** Sets a variable indicating no eligible customers were found (`system_log = NOT_FOUND`).\n2.  **Log Status:** Records this 'NOT_FOUND' status along with the current timestamp in the 'SYSTEM_LOG' Google Sheet. This helps track when the daily workflow ran but had no one to process."
      },
      "typeVersion": 1
    },
    {
      "id": "0f076e97-7cf0-48b6-8808-db0f1863409e",
      "name": "付箋2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        760,
        -360
      ],
      "parameters": {
        "color": 2,
        "width": 460,
        "height": 280,
        "content": "# 01. Filter & Branch\n\n**Purpose:** Filters the fetched customer data to identify those meeting specific win-back criteria:\n1.  `predicted_churn_score` is greater than 0.7.\n2.  No previous campaign date exists (`created_campaign_date` is empty - *Note: Verify this field's purpose or adjust logic if needed*).\nThen, it checks if any customers passed the filter. The workflow branches based on whether eligible customers were found."
      },
      "typeVersion": 1
    },
    {
      "id": "d3493f09-7eba-4625-98db-83cf649dbbcf",
      "name": "付箋3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1700,
        -760
      ],
      "parameters": {
        "color": 4,
        "width": 600,
        "height": 360,
        "content": "# 02. Generate & Send Win-Back Offer (Loop)\n\n**Purpose:** Processes each eligible customer found in the previous step individually within a loop.\n1.  **Generate Offer (Gemini):** Uses Google Gemini to create a personalized win-back offer (Informational, Bonus Points, or Discount) based on the customer's `predicted_churn_score` and `preferred_categories`. Outputs offer details in JSON format.\n2.  **Log Sent Offer:** Records the successful generation and intent to send the offer (action_taken, timestamp, customer_id) in the 'SYSTEM_LOG' Google Sheet.\n3.  **Send Email (Gmail):** Sends the generated offer details (`offer_title` and `offer_details`) via email to the customer's `user_mail`.\nThe loop continues until all eligible customers are processed."
      },
      "typeVersion": 1
    },
    {
      "id": "2fc53a15-2bdd-48f5-9a74-44a2e028e7e0",
      "name": "付箋4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -360,
        -120
      ],
      "parameters": {
        "width": 400,
        "height": 380,
        "content": "# Example Customer Data\n\n\n{\n    \"customer_id\": \"CUST_001\",\n    \"last_purchase_date\": \"2024-01-10T10:00:00Z\",\n    \"purchase_frequency_days\": 90,\n    \"user_mail\":\"example@mail.com\",\n    \"days_since_last_purchase\": 110,\n    \"total_spent_usd\": 55.0,\n    \"preferred_categories\": [\"Kitap\", \"Ofis Malzemeleri\"],\n    \"predicted_churn_score\": 0.85,\n    \"profile_tags\": [\"inactive_long_time\", \"low_spender\"],\n    \"timestamp\": \"2024-06-08T09:00:00Z\"\n}\n"
      },
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "ee485123-32be-447b-80f3-303e3a046207": {
      "ai_outputParser": [
        [
          {
            "node": "8896a776-ed5b-431a-908b-663fa8475c77",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "13095156-a54f-432f-8d10-209ddc30680a": {
      "main": [
        [
          {
            "node": "1f823726-6483-40c1-b184-eac87886ded5",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8896a776-ed5b-431a-908b-663fa8475c77": {
      "main": [
        [
          {
            "node": "005890c2-f77d-4d0d-add2-496642464a9f",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "005890c2-f77d-4d0d-add2-496642464a9f": {
      "main": [
        [
          {
            "node": "98295978-21f1-420f-8e9c-4014d53ffb16",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "98295978-21f1-420f-8e9c-4014d53ffb16": {
      "main": [
        [
          {
            "node": "c1164b8f-4497-4763-bb42-7187e9f2f4d2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8f52666a-7247-4058-a775-2be80e3b4c0e": {
      "main": [
        [
          {
            "node": "37951981-3c3d-4434-8782-51e9129f0bbc",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c1164b8f-4497-4763-bb42-7187e9f2f4d2": {
      "main": [
        [],
        [
          {
            "node": "8896a776-ed5b-431a-908b-663fa8475c77",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "b89954e9-7689-47e6-bf15-3089f3863ca9": {
      "ai_languageModel": [
        [
          {
            "node": "8896a776-ed5b-431a-908b-663fa8475c77",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "4152752b-3ba3-4af0-aec8-aba9fc0424d9": {
      "main": [
        [
          {
            "node": "c1164b8f-4497-4763-bb42-7187e9f2f4d2",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "13095156-a54f-432f-8d10-209ddc30680a",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "13f8de57-7247-4be1-8fc4-dddc1a7d677e": {
      "main": [
        [
          {
            "node": "8f52666a-7247-4058-a775-2be80e3b4c0e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "37951981-3c3d-4434-8782-51e9129f0bbc": {
      "main": [
        [
          {
            "node": "4152752b-3ba3-4af0-aec8-aba9fc0424d9",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
よくある質問

このワークフローの使い方は?

上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。

このワークフローはどんな場面に適していますか?

上級 - サポート, 人工知能, マーケティング

有料ですか?

このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。

ワークフロー情報
難易度
上級
ノード数17
カテゴリー3
ノードタイプ11
難易度説明

上級者向け、16ノード以上の複雑なワークフロー

作成者

Hello, I'm Onur I've been working as a freelance software developer for about four years. In addition, I develop my own projects. For some time, I have been improving myself and providing various services related to AI and AI workflows. Both by writing low code and code. If you have any questions, don't hesitate to contact me.

外部リンク
n8n.ioで表示

このワークフローを共有

カテゴリー

カテゴリー: 34