Googleトレンドデータ抽出、Bright DataとGoogle Geminiを使用して要約生成

上級

これはEngineering, AI, Marketing分野の自動化ワークフローで、16個のノードを含みます。主にSet, Gmail, Function, HttpRequest, ManualTriggerなどのノードを使用、AI技術を活用したスマート自動化を実現。 Bright DataとGoogle Geminiを利用したGoogleトレンドデータ抽出と要約生成

前提条件
  • Googleアカウント + Gmail API認証情報
  • ターゲットAPIの認証情報が必要な場合あり
  • Google Gemini API Key
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
  "id": "9Or3kzIEI2tskRyR",
  "meta": {
    "instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
    "templateCredsSetupCompleted": true
  },
  "name": "Google Trend Data Extract, Summarization with Bright Data & Google Gemini",
  "tags": [
    {
      "id": "Kujft2FOjmOVQAmJ",
      "name": "Engineering",
      "createdAt": "2025-04-09T01:31:00.558Z",
      "updatedAt": "2025-04-09T01:31:00.558Z"
    },
    {
      "id": "ddPkw7Hg5dZhQu2w",
      "name": "AI",
      "createdAt": "2025-04-13T05:38:08.053Z",
      "updatedAt": "2025-04-13T05:38:08.053Z"
    }
  ],
  "nodes": [
    {
      "id": "29e6ce01-c42f-4155-add1-8a5cfff56967",
      "name": "ワークフロー「テスト」クリック時",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        200,
        -420
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "6abf0439-8286-4198-9b5e-226a7bf805dc",
      "name": "付箋ノート",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        200,
        -780
      ],
      "parameters": {
        "width": 400,
        "height": 300,
        "content": "## Note\n\nThis workflow deals with the structured data extraction by utilizing Bright Data Web Unlocker Product.\n\nThe Basic LLM Chain, Information Extraction, Summarization Chain are being used to demonstrate the usage of the N8N AI capabilities.\n\n**Please make sure to set the web URL of your interest within the \"Set URL and Bright Data Zone\" node and update the Webhook Notification URL**"
      },
      "typeVersion": 1
    },
    {
      "id": "6443bdea-4577-4983-adb7-0f52d6eb3825",
      "name": "付箋ノート1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        620,
        -780
      ],
      "parameters": {
        "width": 480,
        "height": 300,
        "content": "## LLM Usages\n\nGoogle Gemini Flash Exp model is being used.\n\nBasic LLM Chain Data Extractor.\n\nInformation Extraction is being used for the handling the structured data extraction.\n\nSummarization Chain is being used for building the summary."
      },
      "typeVersion": 1
    },
    {
      "id": "31280203-1ab1-4fb5-862f-e9c4f2969436",
      "name": "Markdownからテキストデータ抽出",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        860,
        -420
      ],
      "parameters": {
        "text": "=You need to analyze the below markdown and convert to textual data. Please do not output with your own thoughts. Make sure to output with textual data only with no links, scripts, css etc.\n\n{{ $json.data }}",
        "messages": {
          "messageValues": [
            {
              "message": "You are a markdown expert"
            }
          ]
        },
        "promptType": "define"
      },
      "typeVersion": 1.6
    },
    {
      "id": "80e40926-aff3-4512-ad1e-61b3741b2387",
      "name": "URLとBright Dataゾーンの設定",
      "type": "n8n-nodes-base.set",
      "position": [
        420,
        -420
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "3aedba66-f447-4d7a-93c0-8158c5e795f9",
              "name": "url",
              "type": "string",
              "value": "https://trends.google.com/trends/explore?gprop=youtube&hl=en-US"
            },
            {
              "id": "4e7ee31d-da89-422f-8079-2ff2d357a0ba",
              "name": "zone",
              "type": "string",
              "value": "web_unlocker1"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "a60b2ac6-42c9-42af-a7fe-9cf570fcd017",
      "name": "Markdownからテキストデータ抽出のためのWebhook通知を開始",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1320,
        -720
      ],
      "parameters": {
        "url": "https://webhook.site/3c36d7d1-de1b-4171-9fd3-643ea2e4dd76",
        "options": {},
        "sendBody": true,
        "bodyParameters": {
          "parameters": [
            {
              "name": "content",
              "value": "={{ $json.text }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "c8f9b2ad-8e66-43d0-aeb5-3f5e202910d3",
      "name": "Google Gemini データ抽出用チャットモデル",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        948,
        -200
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "30d3b080-d35a-422d-990d-0df0d73b96a8",
      "name": "Bright Dataウェブリクエストの実行",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        640,
        -420
      ],
      "parameters": {
        "url": "https://api.brightdata.com/request",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "sendHeaders": true,
        "authentication": "genericCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "zone",
              "value": "={{ $json.zone }}"
            },
            {
              "name": "url",
              "value": "={{ $json.url }}?product=unlocker&method=api"
            },
            {
              "name": "format",
              "value": "raw"
            },
            {
              "name": "data_format",
              "value": "markdown"
            }
          ]
        },
        "genericAuthType": "httpHeaderAuth",
        "headerParameters": {
          "parameters": [
            {}
          ]
        }
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "kdbqXuxIR8qIxF7y",
          "name": "Header Auth account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "18acbc0a-f0e2-4f5b-b98c-dec69c656a7e",
      "name": "バイナリデータの作成",
      "type": "n8n-nodes-base.function",
      "position": [
        1980,
        -640
      ],
      "parameters": {
        "functionCode": "items[0].binary = {\n  data: {\n    data: new Buffer(JSON.stringify(items[0].json, null, 2)).toString('base64')\n  }\n};\nreturn items;"
      },
      "typeVersion": 1
    },
    {
      "id": "1c386966-85ae-4b30-a485-259f1eb0727b",
      "name": "構造化データ抽出",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        1280,
        -420
      ],
      "parameters": {
        "text": "=Extract the Google Trend Data in JSON.\n\nHere's the content:\n\n {{ $json.text }}",
        "options": {},
        "schemaType": "manual",
        "inputSchema": "{\n\t\"type\": \"array\",\n\t\"properties\": {\n\t\t\"topics\": {\n\t\t\t\"type\": \"string\"\n\t\t},\"desc\": {\n\t\t\t\"type\": \"string\"\n\t\t}\n\t}\n}"
      },
      "typeVersion": 1
    },
    {
      "id": "aa7b5dd7-53c7-4197-b2e8-886832cad82e",
      "name": "Googleトレンドの要約",
      "type": "@n8n/n8n-nodes-langchain.chainSummarization",
      "position": [
        1760,
        -420
      ],
      "parameters": {
        "options": {},
        "chunkingMode": "advanced"
      },
      "typeVersion": 2
    },
    {
      "id": "25f0a115-ba3a-4ec6-8fe6-8e33e6302a2b",
      "name": "要約のためのWebhook通知を開始",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        2200,
        -420
      ],
      "parameters": {
        "url": "https://webhook.site/3c36d7d1-de1b-4171-9fd3-643ea2e4dd76",
        "options": {},
        "sendBody": true,
        "bodyParameters": {
          "parameters": [
            {
              "name": "content",
              "value": "={{ $json.response.text }}"
            }
          ]
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "50b55d73-5506-439c-8e82-e198f3b4f431",
      "name": "ファイルをディスクに書き込み",
      "type": "n8n-nodes-base.readWriteFile",
      "position": [
        2200,
        -640
      ],
      "parameters": {
        "options": {},
        "fileName": "d:\\google-trends.json",
        "operation": "write"
      },
      "typeVersion": 1
    },
    {
      "id": "a163f8d3-2b5c-48a5-8a1d-26c0caba6383",
      "name": "Google Gemini 要約用チャットモデル",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1860,
        -200
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "9e3db8e9-ad4c-4247-841e-1f5f4937b93c",
      "name": "Google Gemini 構造化データ抽出用チャットモデル",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        1380,
        -200
      ],
      "parameters": {
        "options": {},
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "YeO7dHZnuGBVQKVZ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "122d3269-e932-48e0-af01-e2c421650e16",
      "name": "要約をGmailに送信",
      "type": "n8n-nodes-base.gmail",
      "position": [
        2200,
        -160
      ],
      "webhookId": "a57ca2f7-42dc-4ee9-808d-85455bb7c12f",
      "parameters": {
        "sendTo": "ranjancse@gmail.com",
        "message": "={{ $json.response.text }}",
        "options": {},
        "subject": "Google Trends Summary"
      },
      "credentials": {
        "gmailOAuth2": {
          "id": "WiMjt9PIpypF2dJF",
          "name": "Gmail account"
        }
      },
      "typeVersion": 2.1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "bc73fbca-1218-47bd-93cf-b308b424894d",
  "connections": {
    "18acbc0a-f0e2-4f5b-b98c-dec69c656a7e": {
      "main": [
        [
          {
            "node": "50b55d73-5506-439c-8e82-e198f3b4f431",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "50b55d73-5506-439c-8e82-e198f3b4f431": {
      "main": [
        []
      ]
    },
    "aa7b5dd7-53c7-4197-b2e8-886832cad82e": {
      "main": [
        [
          {
            "node": "25f0a115-ba3a-4ec6-8fe6-8e33e6302a2b",
            "type": "main",
            "index": 0
          },
          {
            "node": "122d3269-e932-48e0-af01-e2c421650e16",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "1c386966-85ae-4b30-a485-259f1eb0727b": {
      "main": [
        [
          {
            "node": "18acbc0a-f0e2-4f5b-b98c-dec69c656a7e",
            "type": "main",
            "index": 0
          },
          {
            "node": "aa7b5dd7-53c7-4197-b2e8-886832cad82e",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "80e40926-aff3-4512-ad1e-61b3741b2387": {
      "main": [
        [
          {
            "node": "30d3b080-d35a-422d-990d-0df0d73b96a8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "30d3b080-d35a-422d-990d-0df0d73b96a8": {
      "main": [
        [
          {
            "node": "31280203-1ab1-4fb5-862f-e9c4f2969436",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "29e6ce01-c42f-4155-add1-8a5cfff56967": {
      "main": [
        [
          {
            "node": "80e40926-aff3-4512-ad1e-61b3741b2387",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "31280203-1ab1-4fb5-862f-e9c4f2969436": {
      "main": [
        [
          {
            "node": "a60b2ac6-42c9-42af-a7fe-9cf570fcd017",
            "type": "main",
            "index": 0
          },
          {
            "node": "1c386966-85ae-4b30-a485-259f1eb0727b",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c8f9b2ad-8e66-43d0-aeb5-3f5e202910d3": {
      "ai_languageModel": [
        [
          {
            "node": "31280203-1ab1-4fb5-862f-e9c4f2969436",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "a163f8d3-2b5c-48a5-8a1d-26c0caba6383": {
      "ai_languageModel": [
        [
          {
            "node": "aa7b5dd7-53c7-4197-b2e8-886832cad82e",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "9e3db8e9-ad4c-4247-841e-1f5f4937b93c": {
      "ai_languageModel": [
        [
          {
            "node": "1c386966-85ae-4b30-a485-259f1eb0727b",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    }
  }
}
よくある質問

このワークフローの使い方は?

上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。

このワークフローはどんな場面に適していますか?

上級 - エンジニアリング, 人工知能, マーケティング

有料ですか?

このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。

関連ワークフロー

Bright Dataを使用したブランドコンテンツの抽出・要約・感情分析
Bright DataとGoogle Geminiを使用してブランドコンテンツを抽出および分析
Set
Function
Http Request
+
Set
Function
Http Request
23 ノードRanjan Dailata
人工知能
Bright Data を使用して Google Gemini で Etsy データをスクレイピングし自動化
Etsy データマイニングの自動化を実現:Bright Data によるスクレピング、Google Gemini
Set
Function
Split Out
+
Set
Function
Split Out
19 ノードRanjan Dailata
プロダクト
AIアゲント駆動のProduct Huntデータ抽出と検索(Bright DataとGoogle Geminiを使用)
Bright Data MCPとGoogle Gemini AIを使ってProduct Huntデータをクロールして検索
Set
Function
Mcp Client
+
Set
Function
Mcp Client
21 ノードRanjan Dailata
人工知能
Brave検索による構造化データ抽出(Bright Data MCP + Google Gemini)
Bright Data MCPとGoogle Geminiを使用してBrave検索から構造化されたデータを抽出
Set
Switch
Function
+
Set
Switch
Function
24 ノードRanjan Dailata
人工知能
Amazon製品の価格下落をBright Dataで抽出・要約・分析
Bright DataとGoogle GeminiでAmazonの価格下落情報を抽出・要約・分析
Set
Wait
Merge
+
Set
Wait
Merge
26 ノードRanjan Dailata
人工知能
Bright Data MCPサーバーとGoogle Geminiを使ったLinkedInウェブスクレイピング
Bright Data MCPサーバーとGoogle Geminiを使用したLinkedInデータの抽出・変換
Set
Code
Merge
+
Set
Code
Merge
20 ノードRanjan Dailata
人工知能
ワークフロー情報
難易度
上級
ノード数16
カテゴリー3
ノードタイプ11
難易度説明

上級者向け、16ノード以上の複雑なワークフロー

外部リンク
n8n.ioで表示

このワークフローを共有

カテゴリー

カテゴリー: 34