Bright Data、Gemini、Pinecone を使用して LLM 向けに AI 対応のベクトルデータセットを作成
上級
これはBuilding Blocks, AI分野の自動化ワークフローで、21個のノードを含みます。主にSet, HttpRequest, ManualTrigger, Agent, ChainLlmなどのノードを使用、AI技術を活用したスマート自動化を実現。 Bright Data、Gemini、Pinecone を使用して LLM 向け AI 就緒のベクトルデータセットを作成
前提条件
- •ターゲットAPIの認証情報が必要な場合あり
- •Google Gemini API Key
- •Pinecone API Key
使用ノード (21)
カテゴリー
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "3Lih0LVosR8dZbla",
"meta": {
"instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
"templateCredsSetupCompleted": true
},
"name": "Create AI-Ready Vector Datasets for LLMs with Bright Data, Gemini & Pinecone",
"tags": [
{
"id": "Kujft2FOjmOVQAmJ",
"name": "Engineering",
"createdAt": "2025-04-09T01:31:00.558Z",
"updatedAt": "2025-04-09T01:31:00.558Z"
},
{
"id": "ZOwtAMLepQaGW76t",
"name": "Building Blocks",
"createdAt": "2025-04-13T15:23:40.462Z",
"updatedAt": "2025-04-13T15:23:40.462Z"
},
{
"id": "ddPkw7Hg5dZhQu2w",
"name": "AI",
"createdAt": "2025-04-13T05:38:08.053Z",
"updatedAt": "2025-04-13T05:38:08.053Z"
}
],
"nodes": [
{
"id": "0a468953-e348-420e-a6b3-c55fb20d3cbf",
"name": "「Test workflow」クリック時",
"type": "n8n-nodes-base.manualTrigger",
"position": [
200,
-710
],
"parameters": {},
"typeVersion": 1
},
{
"id": "3725e480-246f-4f32-b0a7-b946cacbe830",
"name": "AIエージェント",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1236,
-60
],
"parameters": {
"text": "=Format the below search result\n\n{{ $json.output.search_result }}",
"options": {},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.8
},
{
"id": "30a12b8e-02f5-4b2e-bf9f-20fd9658405e",
"name": "Pinecone ベクトルストア",
"type": "@n8n/n8n-nodes-langchain.vectorStorePinecone",
"position": [
1628,
-10
],
"parameters": {
"mode": "insert",
"options": {},
"pineconeIndex": {
"__rl": true,
"mode": "list",
"value": "hacker-news",
"cachedResultName": "hacker-news"
}
},
"credentials": {
"pineconeApi": {
"id": "wdfRQ6NE8yjCDFhY",
"name": "PineconeApi account"
}
},
"typeVersion": 1.1
},
{
"id": "1738dea6-fa4f-4a8d-a6fb-2f01feb1a6d5",
"name": "Google Gemini 埋め込み",
"type": "@n8n/n8n-nodes-langchain.embeddingsGoogleGemini",
"position": [
1612,
210
],
"parameters": {
"modelName": "models/text-embedding-004"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "e6443541-de71-4d26-ad58-d7c72868a190",
"name": "デフォルトデータローダー",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
1760,
220
],
"parameters": {
"options": {},
"jsonData": "={{ $('Information Extractor with Data Formatter').item.json.output.search_result }}",
"jsonMode": "expressionData"
},
"typeVersion": 1
},
{
"id": "09ffc8cd-096f-47fe-937d-f8ab4fb41266",
"name": "再帰的文字テキスト分割器",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
1820,
410
],
"parameters": {
"options": {}
},
"typeVersion": 1
},
{
"id": "90cc9aa4-0931-4c52-8734-e4e0de820205",
"name": "Google Gemini チャットモデル1",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1240,
160
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "1090a4af-7e5d-446b-a537-3afe48cd4909",
"name": "Google Gemini チャットモデル2",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
948,
-340
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "324c530c-0a03-411e-acb0-d82e9dc635cf",
"name": "Google Gemini チャットモデル",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
948,
160
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash-exp"
},
"credentials": {
"googlePalmApi": {
"id": "YeO7dHZnuGBVQKVZ",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "3226a2d6-ade1-4d6a-95c5-0be4d787a947",
"name": "構造化出力パーサー",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
1400,
160
],
"parameters": {
"jsonSchemaExample": "[{\n\t\"id\": \"<string>\",\n\t\"title\": \"<string>\",\n \"summary\": \"<string>\",\n \"keywords\": [\"\"],\n \"topics\": [\"\"]\n}]"
},
"typeVersion": 1.2
},
{
"id": "a739a314-900a-4ef7-9cc2-1b65374e2e05",
"name": "付箋ノート",
"type": "n8n-nodes-base.stickyNote",
"position": [
40,
-360
],
"parameters": {
"width": 480,
"height": 220,
"content": "## Note\nPlease make sure to set the URL for web crawling. \n\nWeb-Unlocker Product is being utilized for performing the web scrapping. \n\nThis workflow is utilizing the Basic LLM Chain, Information Extraction with the AI Agents for formatting, extracting and persisting the response in PineCone Vector Database"
},
"typeVersion": 1
},
{
"id": "3dca6d46-c423-4fb5-a6e4-c2aa2852d51c",
"name": "フィールド設定 - URLおよびWebhook URL",
"type": "n8n-nodes-base.set",
"notes": "Set the URL which you are interested to scrap the data",
"position": [
420,
-710
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "1c132dd6-31e4-453b-a8cf-cad9845fe55b",
"name": "url",
"type": "string",
"value": "https://news.ycombinator.com?product=unlocker&method=api"
},
{
"id": "90f3272b-d13d-44e2-8b4c-0943648cfce9",
"name": "webhook_url",
"type": "string",
"value": "https://webhook.site/bc804ce5-4a45-4177-a68a-99c80e5c86e6"
}
]
}
},
"notesInFlow": true,
"typeVersion": 3.4
},
{
"id": "216a3261-a398-484c-9bf4-ca5966b829b6",
"name": "ウェブリクエストをMake",
"type": "n8n-nodes-base.httpRequest",
"position": [
640,
-260
],
"parameters": {
"url": "https://api.brightdata.com/request",
"method": "POST",
"options": {},
"sendBody": true,
"sendHeaders": true,
"authentication": "genericCredentialType",
"bodyParameters": {
"parameters": [
{
"name": "zone",
"value": "web_unlocker1"
},
{
"name": "url",
"value": "={{ $json.url }}"
},
{
"name": "format",
"value": "raw"
}
]
},
"genericAuthType": "httpHeaderAuth",
"headerParameters": {
"parameters": [
{}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "kdbqXuxIR8qIxF7y",
"name": "Header Auth account"
}
},
"typeVersion": 4.2
},
{
"id": "0c74e21c-3007-4297-b6ab-8ee17f4c6436",
"name": "構造化JSONデータフォーマッター",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
860,
-560
],
"parameters": {
"text": "=Format the below response and produce a textual data. Output the response as per the below JSON schema.\n\nHere's the input: {{ $json.data }}\nHere's the JSON schema: \n\n[{\n \"rank\": { \"type\": \"integer\" },\n \"title\": { \"type\": \"string\" },\n \"site\": { \"type\": \"string\" },\n \"points\": { \"type\": \"integer\" },\n \"user\": { \"type\": \"string\" },\n \"age\": { \"type\": \"string\" },\n \"comments\": { \"type\": \"string\" }\n}]",
"messages": {
"messageValues": [
{
"message": "You are an expert data formatter"
}
]
},
"promptType": "define"
},
"typeVersion": 1.6
},
{
"id": "012d4bb0-2b58-47cd-9cea-b4e0dced9082",
"name": "構造化データ用Webhook",
"type": "n8n-nodes-base.httpRequest",
"position": [
1314,
-860
],
"parameters": {
"url": "={{ $json.webhook_url }}",
"options": {},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "response",
"value": "={{ $json.text }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "93b35e5e-6f52-4aeb-8f1b-39cc495beefe",
"name": "構造化AIエージェント応答用Webhook",
"type": "n8n-nodes-base.httpRequest",
"position": [
1750,
-660
],
"parameters": {
"url": "={{ $json.webhook_url }}",
"options": {},
"sendBody": true,
"bodyParameters": {
"parameters": [
{
"name": "response",
"value": "={{ $json.output }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "251b4251-255c-48c6-999b-02227fa2de9b",
"name": "付箋ノート1",
"type": "n8n-nodes-base.stickyNote",
"position": [
800,
-620
],
"parameters": {
"width": 360,
"height": 420,
"content": "## AI Data Formatter\n"
},
"typeVersion": 1
},
{
"id": "f62463cd-6be3-4942-a636-de980a3154b4",
"name": "付箋ノート2",
"type": "n8n-nodes-base.stickyNote",
"position": [
1560,
-160
],
"parameters": {
"color": 4,
"width": 520,
"height": 720,
"content": "## Vector Database Persistence\n"
},
"typeVersion": 1
},
{
"id": "ad20cc91-766a-4a57-be54-6f0d09a784eb",
"name": "付箋ノート3",
"type": "n8n-nodes-base.stickyNote",
"position": [
1260,
-920
],
"parameters": {
"color": 3,
"width": 680,
"height": 440,
"content": "## Webhook Notification Handler\n"
},
"typeVersion": 1
},
{
"id": "37ab5c0f-d36e-4131-844d-20a22d3f2861",
"name": "データフォーマッター付き情報抽出器",
"type": "@n8n/n8n-nodes-langchain.informationExtractor",
"position": [
860,
-60
],
"parameters": {
"text": "={{ $json.data }}",
"options": {
"systemPromptTemplate": "You are an expert HTML extractor. Your job is to analyze the search result and extract the content as a collection on items"
},
"attributes": {
"attributes": [
{
"name": "search_result",
"description": "Search Response"
}
]
}
},
"typeVersion": 1
},
{
"id": "e04e189a-8ba9-4ef4-9a49-fc13daf00828",
"name": "付箋ノート4",
"type": "n8n-nodes-base.stickyNote",
"position": [
800,
-160
],
"parameters": {
"color": 5,
"width": 720,
"height": 720,
"content": "## Data Extraction/Formatting with the AI Agent\n"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "799fb406-600d-45a5-b926-24b8844f33a5",
"connections": {
"3725e480-246f-4f32-b0a7-b946cacbe830": {
"main": [
[
{
"node": "30a12b8e-02f5-4b2e-bf9f-20fd9658405e",
"type": "main",
"index": 0
},
{
"node": "93b35e5e-6f52-4aeb-8f1b-39cc495beefe",
"type": "main",
"index": 0
}
]
]
},
"216a3261-a398-484c-9bf4-ca5966b829b6": {
"main": [
[
{
"node": "0c74e21c-3007-4297-b6ab-8ee17f4c6436",
"type": "main",
"index": 0
},
{
"node": "37ab5c0f-d36e-4131-844d-20a22d3f2861",
"type": "main",
"index": 0
}
]
]
},
"e6443541-de71-4d26-ad58-d7c72868a190": {
"ai_document": [
[
{
"node": "30a12b8e-02f5-4b2e-bf9f-20fd9658405e",
"type": "ai_document",
"index": 0
}
]
]
},
"30a12b8e-02f5-4b2e-bf9f-20fd9658405e": {
"ai_tool": [
[]
]
},
"1738dea6-fa4f-4a8d-a6fb-2f01feb1a6d5": {
"ai_embedding": [
[
{
"node": "30a12b8e-02f5-4b2e-bf9f-20fd9658405e",
"type": "ai_embedding",
"index": 0
}
]
]
},
"324c530c-0a03-411e-acb0-d82e9dc635cf": {
"ai_languageModel": [
[
{
"node": "37ab5c0f-d36e-4131-844d-20a22d3f2861",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"3226a2d6-ade1-4d6a-95c5-0be4d787a947": {
"ai_outputParser": [
[
{
"node": "3725e480-246f-4f32-b0a7-b946cacbe830",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"90cc9aa4-0931-4c52-8734-e4e0de820205": {
"ai_languageModel": [
[
{
"node": "3725e480-246f-4f32-b0a7-b946cacbe830",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"1090a4af-7e5d-446b-a537-3afe48cd4909": {
"ai_languageModel": [
[
{
"node": "0c74e21c-3007-4297-b6ab-8ee17f4c6436",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"0c74e21c-3007-4297-b6ab-8ee17f4c6436": {
"main": [
[
{
"node": "012d4bb0-2b58-47cd-9cea-b4e0dced9082",
"type": "main",
"index": 0
}
]
]
},
"3dca6d46-c423-4fb5-a6e4-c2aa2852d51c": {
"main": [
[
{
"node": "216a3261-a398-484c-9bf4-ca5966b829b6",
"type": "main",
"index": 0
},
{
"node": "012d4bb0-2b58-47cd-9cea-b4e0dced9082",
"type": "main",
"index": 0
},
{
"node": "93b35e5e-6f52-4aeb-8f1b-39cc495beefe",
"type": "main",
"index": 0
}
]
]
},
"09ffc8cd-096f-47fe-937d-f8ab4fb41266": {
"ai_textSplitter": [
[
{
"node": "e6443541-de71-4d26-ad58-d7c72868a190",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"0a468953-e348-420e-a6b3-c55fb20d3cbf": {
"main": [
[
{
"node": "3dca6d46-c423-4fb5-a6e4-c2aa2852d51c",
"type": "main",
"index": 0
}
]
]
},
"37ab5c0f-d36e-4131-844d-20a22d3f2861": {
"main": [
[
{
"node": "3725e480-246f-4f32-b0a7-b946cacbe830",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - ビルディングブロック, 人工知能
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
ビング・データとGemini AIを使ってBing Copilot検索結果を抽出・要約
Gemini AIとBright Dataを使ってBing Copilot検索性別結果を抽出し、要約する
If
Set
Wait
+
If
Set
Wait
19 ノードRanjan Dailata
人工知能
Amazon製品の価格下落をBright Dataで抽出・要約・分析
Bright DataとGoogle GeminiでAmazonの価格下落情報を抽出・要約・分析
Set
Wait
Merge
+
Set
Wait
Merge
26 ノードRanjan Dailata
人工知能
n8nノードの探索(可視化リファレンスライブラリ内)
n8nノードを可視化リファレンスライブラリで探索
If
Ftp
Set
+
If
Ftp
Set
113 ノードI versus AI
その他
AIアゲント駆動のProduct Huntデータ抽出と検索(Bright DataとGoogle Geminiを使用)
Bright Data MCPとGoogle Gemini AIを使ってProduct Huntデータをクロールして検索
Set
Function
Mcp Client
+
Set
Function
Mcp Client
21 ノードRanjan Dailata
人工知能
Bright Data と Google Gemini を使用した LinkedIn から企業ストーリーの生成
Bright DataとGoogle Geminiを使ってLinkedInから企業のストーリー生成
If
Set
Wait
+
If
Set
Wait
19 ノードRanjan Dailata
営業
⚡AI驱动のYouTube播放列表と视频摘要与分析v2
AI YouTube播放列表与视频分析チャットボット
If
Set
Code
+
If
Set
Code
72 ノードdmr
その他