オーディオ転機能付き HR と IT サービスデスクチャットボット
上級
これはSupport, HR, AI分野の自動化ワークフローで、27個のノードを含みます。主にSet, Switch, Telegram, HttpRequest, ManualTriggerなどのノードを使用、AI技術を活用したスマート自動化を実現。 音声転送機能を備えた人事サービスデスクチャットボット
前提条件
- •Telegram Bot Token
- •ターゲットAPIの認証情報が必要な場合あり
- •OpenAI API Key
- •PostgreSQLデータベース接続情報
使用ノード (27)
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "zmgSshZ5xESr3ozl",
"meta": {
"instanceId": "1fedaf0aa3a5d200ffa1bbc98554b56cac895dd5d001907cb6f1c7a3c0a78215",
"templateCredsSetupCompleted": true
},
"name": "HR & IT Helpdesk Chatbot with Audio Transcription",
"tags": [],
"nodes": [
{
"id": "c6cb921e-97ac-48f6-9d79-133993dd6ef7",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
-300,
-280
],
"parameters": {
"color": 7,
"width": 780,
"height": 460,
"content": "## 1. Download & Extract Internal Policy Documents\n[Read more about the HTTP Request Tool](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.httprequest)\n\nBegin by importing the PDF documents that contain your internal policies and FAQs—these will become the knowledge base for your Internal Helpdesk Assistant. For example, you can store a company handbook or IT/HR policy PDFs on a shared drive or cloud storage and reference a direct download link here.\n\nIn this demonstration, we'll use the **HTTP Request node** to fetch the PDF file from a given URL and then parse its text contents using the **Extract from File node**. Once extracted, these text chunks will be used to build the vector store that underpins your helpdesk chatbot’s responses.\n\n[Example Employee Handbook with Policies](https://s3.amazonaws.com/scschoolfiles/656/employee_handbook_print_1.pdf)"
},
"typeVersion": 1
},
{
"id": "450a254c-eec3-41ea-a11d-eb87b62ee4f4",
"name": "「ワークフローをテスト」クリック時",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-80,
20
],
"parameters": {},
"typeVersion": 1
},
{
"id": "0972f31c-1f62-430c-8beb-bef8976cd0eb",
"name": "HTTP リクエスト",
"type": "n8n-nodes-base.httpRequest",
"position": [
100,
20
],
"parameters": {
"url": "https://s3.amazonaws.com/scschoolfiles/656/employee_handbook_print_1.pdf",
"options": {}
},
"typeVersion": 4.2
},
{
"id": "bf523255-39f5-410a-beb7-6331139c5f9b",
"name": "ファイルから抽出",
"type": "n8n-nodes-base.extractFromFile",
"position": [
280,
20
],
"parameters": {
"options": {},
"operation": "pdf"
},
"typeVersion": 1
},
{
"id": "88901c7c-e747-44c7-87d9-e14ac99a93db",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
540,
-280
],
"parameters": {
"color": 7,
"width": 780,
"height": 1020,
"content": "## 2. Create Internal Policy Vector Store\n[Read more about the In-Memory Vector Store](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstoreinmemory/)\n\nVector stores power the retrieval process by matching a user's natural language questions to relevant chunks of text. We'll transform your extracted internal policy text into vector embeddings and store them in a database-like structure.\n\nWe will be using PostgreSQL which has production ready vector support.\n\n**How it works** \n1. The text extracted in Step 1 is split into manageable segments (chunks). \n2. An embedding model transforms these segments into numerical vectors. \n3. These vectors, along with metadata, are stored in PostgreSQL. \n4. When users ask a question, their query is embedded and matched to the most relevant vectors, improving the accuracy of the chatbot's response."
},
"typeVersion": 1
},
{
"id": "8d6472ab-dcff-4d24-a320-109787bce52a",
"name": "人事ポリシー作成",
"type": "@n8n/n8n-nodes-langchain.vectorStorePGVector",
"position": [
620,
100
],
"parameters": {
"mode": "insert",
"options": {}
},
"credentials": {
"postgres": {
"id": "wQK6JXyS5y1icHw3",
"name": "Postgres account"
}
},
"typeVersion": 1
},
{
"id": "e669b3fb-aaf1-4df8-855b-d3142215b308",
"name": "Embeddings OpenAI",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
600,
320
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "J2D6m1evHLUJOMhO",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "e25418af-65bb-4628-9b26-ec59cae7b2b4",
"name": "デフォルトデータローダー",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
760,
340
],
"parameters": {
"options": {},
"jsonData": "={{ $('Extract from File').item.json.text }}",
"jsonMode": "expressionData"
},
"typeVersion": 1
},
{
"id": "a4538deb-8406-4a5b-9b1e-4e2f859943c8",
"name": "再帰的文字テキスト分割器",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
860,
560
],
"parameters": {
"options": {},
"chunkSize": 2000
},
"typeVersion": 1
},
{
"id": "7ee0e861-1576-4b0c-b2ef-3fc023371907",
"name": "Telegram トリガー",
"type": "n8n-nodes-base.telegramTrigger",
"position": [
1420,
240
],
"webhookId": "65f501de-3c14-4089-9b9d-8956676bebf3",
"parameters": {
"updates": [
"message"
],
"additionalFields": {}
},
"credentials": {
"telegramApi": {
"id": "jSdrxiRKb8yfG6Ty",
"name": "Telegram account"
}
},
"typeVersion": 1.1
},
{
"id": "bcf1e82e-0e83-4783-a59f-857a6d1528b6",
"name": "メッセージタイプ確認",
"type": "n8n-nodes-base.switch",
"position": [
1620,
240
],
"parameters": {
"rules": {
"values": [
{
"outputKey": "Text",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"operator": {
"type": "array",
"operation": "contains",
"rightType": "any"
},
"leftValue": "={{ $json.message.keys()}}",
"rightValue": "text"
}
]
},
"renameOutput": true
},
{
"outputKey": "Audio",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "d16eb899-cccb-41b6-921e-172c525ff92c",
"operator": {
"type": "array",
"operation": "contains",
"rightType": "any"
},
"leftValue": "={{ $json.message.keys()}}",
"rightValue": "voice"
}
]
},
"renameOutput": true
}
]
},
"options": {
"fallbackOutput": "extra"
}
},
"typeVersion": 3.2,
"alwaysOutputData": false
},
{
"id": "d403f864-c781-48fc-a62b-de0c8bfedf06",
"name": "OpenAI",
"type": "@n8n/n8n-nodes-langchain.openAi",
"position": [
2340,
380
],
"parameters": {
"options": {},
"resource": "audio",
"operation": "transcribe",
"binaryPropertyName": "=data"
},
"credentials": {
"openAiApi": {
"id": "J2D6m1evHLUJOMhO",
"name": "OpenAi account"
}
},
"typeVersion": 1.8
},
{
"id": "5b17c8f1-4bee-4f2a-abcb-74fe72d4cdfd",
"name": "Telegram1",
"type": "n8n-nodes-base.telegram",
"position": [
2120,
380
],
"parameters": {
"fileId": "={{ $json.message.voice.file_id }}",
"resource": "file"
},
"credentials": {
"telegramApi": {
"id": "jSdrxiRKb8yfG6Ty",
"name": "Telegram account"
}
},
"typeVersion": 1.2
},
{
"id": "cc6862cb-acfc-465b-b142-dd5fdc12fb13",
"name": "未対応メッセージタイプ",
"type": "n8n-nodes-base.telegram",
"position": [
2200,
560
],
"parameters": {
"text": "I'm not able to process this message type.",
"chatId": "={{ $json.message.chat.id }}",
"additionalFields": {}
},
"credentials": {
"telegramApi": {
"id": "jSdrxiRKb8yfG6Ty",
"name": "Telegram account"
}
},
"typeVersion": 1.2
},
{
"id": "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760",
"name": "AIエージェント",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
2860,
400
],
"parameters": {
"text": "={{ $json.text }}",
"options": {
"systemMessage": "You are a helpful assistant for HR and employee policies"
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "e0d5416e-a799-46a2-83e3-fa6919ec0e36",
"name": "OpenAI チャットモデル",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
2800,
840
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "J2D6m1evHLUJOMhO",
"name": "OpenAi account"
}
},
"typeVersion": 1.1
},
{
"id": "9149f41d-692e-49bc-ad70-848492d2c345",
"name": "Postgresチャットメモリ",
"type": "@n8n/n8n-nodes-langchain.memoryPostgresChat",
"position": [
3060,
840
],
"parameters": {
"sessionKey": "={{ $('Telegram Trigger').item.json.message.chat.id }}",
"sessionIdType": "customKey"
},
"credentials": {
"postgres": {
"id": "wQK6JXyS5y1icHw3",
"name": "Postgres account"
}
},
"typeVersion": 1.3
},
{
"id": "a1f68887-da44-4bff-86fc-f607a5bd0ab6",
"name": "ベクトルストアでの質問応答",
"type": "@n8n/n8n-nodes-langchain.toolVectorStore",
"position": [
3360,
580
],
"parameters": {
"name": "hr_employee_policies",
"description": "data for HR and employee policies"
},
"typeVersion": 1
},
{
"id": "76220fe4-2448-4b32-92d8-68c564cc702d",
"name": "Postgres PGVectorストア",
"type": "@n8n/n8n-nodes-langchain.vectorStorePGVector",
"position": [
3220,
780
],
"parameters": {
"options": {}
},
"credentials": {
"postgres": {
"id": "wQK6JXyS5y1icHw3",
"name": "Postgres account"
}
},
"typeVersion": 1
},
{
"id": "055fd294-7483-45ce-b58a-c90075199f5f",
"name": "OpenAI チャットモデル1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
3640,
780
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "J2D6m1evHLUJOMhO",
"name": "OpenAi account"
}
},
"typeVersion": 1.1
},
{
"id": "cc13eac7-8163-45bf-8d8a-9cf72659e357",
"name": "Embeddings OpenAI1",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
3300,
920
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "J2D6m1evHLUJOMhO",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "d46e415e-75ff-46b8-b382-cdcda216b1ed",
"name": "Telegram",
"type": "n8n-nodes-base.telegram",
"position": [
4200,
420
],
"parameters": {
"text": "={{ $json.output }}",
"chatId": "={{ $('Telegram Trigger').first().json.message.chat.id }}",
"additionalFields": {}
},
"credentials": {
"telegramApi": {
"id": "jSdrxiRKb8yfG6Ty",
"name": "Telegram account"
}
},
"typeVersion": 1.2
},
{
"id": "ddf623a1-0a5e-48c9-b897-6a339895a891",
"name": "フィールド編集",
"type": "n8n-nodes-base.set",
"position": [
2120,
200
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "403b336f-87ce-4bef-a5f2-1640425f8198",
"name": "text",
"type": "string",
"value": "={{ $json.message.text }}"
}
]
},
"includeOtherFields": true
},
"typeVersion": 3.4
},
{
"id": "4ae84e17-cfc1-425c-930d-949da7308b78",
"name": "付箋2",
"type": "n8n-nodes-base.stickyNote",
"position": [
1340,
-280
],
"parameters": {
"color": 4,
"width": 1300,
"height": 1020,
"content": "## 3. Handling Messages with Fallback Support\n\nThis workflow processes Telegram messages to handle **text** and **voice** inputs, with a fallback for unsupported message types. Here’s how it works:\n\n1. **Trigger Node**:\n - The workflow starts with a Telegram trigger that listens for incoming messages.\n\n2. **Message Type Check**:\n - The workflow verifies the type of message received:\n - **Text Message**: If the message contains `$json.message.text`, it is sent directly to the agent.\n - **Voice Message**: If the message contains `$json.message.voice`, the audio is transcribed into text using a transcription service, and the result is sent to the agent.\n\n3. **Fallback Path**:\n - If the message is neither text nor voice, a fallback response is returned:\n `\"Sorry, I couldn’t process your message. Please try again.\"`\n\n4. **Unified Output**:\n - Both text messages and transcribed voice messages are converted into the same format before sending to the agent, ensuring consistency in handling.\n"
},
"typeVersion": 1
},
{
"id": "86ad4e08-ef2d-405e-8861-bff38e1db651",
"name": "付箋3",
"type": "n8n-nodes-base.stickyNote",
"position": [
220,
220
],
"parameters": {
"width": 260,
"height": 80,
"content": "The setup needs to be run at the start or when data is changed"
},
"typeVersion": 1
},
{
"id": "b05c4437-00fb-40f6-87fa-8dc564b16005",
"name": "付箋4",
"type": "n8n-nodes-base.stickyNote",
"position": [
2680,
-280
],
"parameters": {
"color": 4,
"width": 1180,
"height": 1420,
"content": "## 4. HR & IT AI Agent Provides Helpdesk Support \nn8n's AI agents allow you to create intelligent and interactive workflows that can access and retrieve data from internal knowledgebases. In this workflow, the AI agent is configured to provide answers for HR and IT queries by performing Retrieval-Augmented Generation (RAG) on internal documents.\n\n### How It Works:\n- **Internal Knowledgebase Access**: A **Vector store tool** is used to connect the agent to the HR & IT knowledgebase built earlier in the workflow. This enables the agent to fetch accurate and specific answers for employee queries.\n- **Chat Memory**: A **Chat memory subnode** tracks the conversation, allowing the agent to maintain context across multiple queries from the same user, creating a personalized and cohesive experience.\n- **Dynamic Query Responses**: Whether employees ask about policies, leave balances, or technical troubleshooting, the agent retrieves relevant data from the vector store and crafts a natural language response.\n\nBy integrating the AI agent with a vector store and chat memory, this workflow empowers your HR & IT helpdesk chatbot to provide quick, accurate, and conversational support to employees. \n\nPostgrSQL is used for all steps to simplify development in production."
},
"typeVersion": 1
},
{
"id": "b266ca42-de62-4341-9aff-33ee0ac68045",
"name": "付箋5",
"type": "n8n-nodes-base.stickyNote",
"position": [
3900,
300
],
"parameters": {
"color": 4,
"width": 540,
"height": 280,
"content": "## 5. Send Message\n\nThe simplest and most important part :)"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "7b1d11ca-9b56-4c5f-9189-26d536c24b76",
"connections": {
"d403f864-c781-48fc-a62b-de0c8bfedf06": {
"main": [
[
{
"node": "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760",
"type": "main",
"index": 0
}
]
]
},
"8b97aaa1-ea0d-4b11-89c9-9ac6376c0760": {
"main": [
[
{
"node": "d46e415e-75ff-46b8-b382-cdcda216b1ed",
"type": "main",
"index": 0
}
]
]
},
"5b17c8f1-4bee-4f2a-abcb-74fe72d4cdfd": {
"main": [
[
{
"node": "d403f864-c781-48fc-a62b-de0c8bfedf06",
"type": "main",
"index": 0
}
]
]
},
"ddf623a1-0a5e-48c9-b897-6a339895a891": {
"main": [
[
{
"node": "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760",
"type": "main",
"index": 0
}
]
]
},
"0972f31c-1f62-430c-8beb-bef8976cd0eb": {
"main": [
[
{
"node": "bf523255-39f5-410a-beb7-6331139c5f9b",
"type": "main",
"index": 0
}
]
]
},
"7ee0e861-1576-4b0c-b2ef-3fc023371907": {
"main": [
[
{
"node": "bcf1e82e-0e83-4783-a59f-857a6d1528b6",
"type": "main",
"index": 0
}
]
]
},
"e669b3fb-aaf1-4df8-855b-d3142215b308": {
"ai_embedding": [
[
{
"node": "8d6472ab-dcff-4d24-a320-109787bce52a",
"type": "ai_embedding",
"index": 0
}
]
]
},
"bf523255-39f5-410a-beb7-6331139c5f9b": {
"main": [
[
{
"node": "8d6472ab-dcff-4d24-a320-109787bce52a",
"type": "main",
"index": 0
}
]
]
},
"e0d5416e-a799-46a2-83e3-fa6919ec0e36": {
"ai_languageModel": [
[
{
"node": "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"cc13eac7-8163-45bf-8d8a-9cf72659e357": {
"ai_embedding": [
[
{
"node": "76220fe4-2448-4b32-92d8-68c564cc702d",
"type": "ai_embedding",
"index": 0
}
]
]
},
"055fd294-7483-45ce-b58a-c90075199f5f": {
"ai_languageModel": [
[
{
"node": "a1f68887-da44-4bff-86fc-f607a5bd0ab6",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"e25418af-65bb-4628-9b26-ec59cae7b2b4": {
"ai_document": [
[
{
"node": "8d6472ab-dcff-4d24-a320-109787bce52a",
"type": "ai_document",
"index": 0
}
]
]
},
"bcf1e82e-0e83-4783-a59f-857a6d1528b6": {
"main": [
[
{
"node": "ddf623a1-0a5e-48c9-b897-6a339895a891",
"type": "main",
"index": 0
}
],
[
{
"node": "5b17c8f1-4bee-4f2a-abcb-74fe72d4cdfd",
"type": "main",
"index": 0
}
],
[
{
"node": "cc6862cb-acfc-465b-b142-dd5fdc12fb13",
"type": "main",
"index": 0
}
]
]
},
"9149f41d-692e-49bc-ad70-848492d2c345": {
"ai_memory": [
[
{
"node": "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760",
"type": "ai_memory",
"index": 0
}
]
]
},
"76220fe4-2448-4b32-92d8-68c564cc702d": {
"ai_vectorStore": [
[
{
"node": "a1f68887-da44-4bff-86fc-f607a5bd0ab6",
"type": "ai_vectorStore",
"index": 0
}
]
]
},
"a4538deb-8406-4a5b-9b1e-4e2f859943c8": {
"ai_textSplitter": [
[
{
"node": "e25418af-65bb-4628-9b26-ec59cae7b2b4",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"450a254c-eec3-41ea-a11d-eb87b62ee4f4": {
"main": [
[
{
"node": "0972f31c-1f62-430c-8beb-bef8976cd0eb",
"type": "main",
"index": 0
}
]
]
},
"a1f68887-da44-4bff-86fc-f607a5bd0ab6": {
"ai_tool": [
[
{
"node": "8b97aaa1-ea0d-4b11-89c9-9ac6376c0760",
"type": "ai_tool",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - サポート, 人事, 人工知能
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
Telegram AIサポートチャットボット(マルチモーダル入力)
GPT-4とSupabase RAGを使って多言語Telegramサポートボットを作成
If
Set
Code
+
If
Set
Code
51 ノードEzema Kingsley Chibuzo
サポートチャットボット
[テンプレート] AIペットショップ v8
AIペットショップアシスタント - GPT-4o、Googleカレンダー、WhatsApp/Instagram/Facebookを統合
If
N8n
Set
+
If
N8n
Set
244 ノードAmanda Benks
営業
AI エージェント レストラン [テンプレート]
🤖 WhatsApp、Instagram、MessengerのAIレストランアシスタント
If
N8n
Set
+
If
N8n
Set
239 ノードAmanda Benks
その他
ビジネスのAIコマンドセンター:Google Workspaceモジュール型アクター、ベクター検索、マルチチャネルレポート
ビジネスAIコマンドセンター:Google Workspaceモジュール型アジンス、ベクター検索、マルチチャネルレポート
Set
Gmail
Slack
+
Set
Gmail
Slack
80 ノードPaul
文書抽出
🤖 WhatsApp AI个人アシスタント:GPT-4o、记忆と日程安排功能
AI个人アシスタント:統合GPT-4o、RAGと语音功能,使用SupabaseのWhatsAppアシスタント
If
Set
Wait
+
If
Set
Wait
76 ノードAmanda Benks
人工知能
テキスト、音声、画像、PDF をサポートする RAG を備えた AI 駆動型 WhatsApp チャットボット
テキスト、音声、画像、PDF をサポートする AI 搭載の WhatsApp チャットボット (RAG)
Set
Code
Switch
+
Set
Code
Switch
35 ノードNovaNode
エンジニアリング