データベーススキーマのみから SQL クエリを生成 - AI 駆動
上級
これはEngineering, DevOps, Product, AI分野の自動化ワークフローで、29個のノードを含みます。主にIf, Set, Merge, MySql, ConvertToFileなどのノードを使用、AI技術を活用したスマート自動化を実現。 データベース構造のみからSQLクエリを生成する - AI駆動
前提条件
- •MySQLデータベース接続情報
- •OpenAI API Key
使用ノード (29)
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "P307QnrxpA1ddsM5",
"meta": {
"instanceId": "fb924c73af8f703905bc09c9ee8076f48c17b596ed05b18c0ff86915ef8a7c4a",
"templateCredsSetupCompleted": true
},
"name": "Generate SQL queries from schema only - AI-powered",
"tags": [],
"nodes": [
{
"id": "b7c3ca47-11b3-4378-81fa-68b2f56b295e",
"name": "OpenAI Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1460,
440
],
"parameters": {
"model": "gpt-4o",
"options": {
"temperature": 0.2
}
},
"credentials": {
"openAiApi": {
"id": "rveqdSfp7pCRON1T",
"name": "Ted's Tech Talks OpenAi"
}
},
"typeVersion": 1
},
{
"id": "977c3a82-440b-4d44-9042-47a673bcb52c",
"name": "Window Buffer Memory",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
1640,
440
],
"parameters": {
"contextWindowLength": 10
},
"typeVersion": 1.2
},
{
"id": "c6e9c0e2-d238-4f0b-a4c8-2271f2c8b31b",
"name": "No Operation, do nothing",
"type": "n8n-nodes-base.noOp",
"position": [
2340,
520
],
"parameters": {},
"typeVersion": 1
},
{
"id": "4c141ae8-d2d1-45c7-bb5d-f33841d3cee6",
"name": "データベース内の全テーブルをリスト",
"type": "n8n-nodes-base.mySql",
"position": [
520,
-35
],
"parameters": {
"query": "SHOW TABLES;",
"options": {},
"operation": "executeQuery"
},
"credentials": {
"mySql": {
"id": "ICakJ1LRuVl4dRTs",
"name": "db4free TTT account"
}
},
"typeVersion": 2.4
},
{
"id": "54fb3362-041b-4e4f-bfea-f0bc788d8dfd",
"name": "データベーススキーマを抽出",
"type": "n8n-nodes-base.mySql",
"position": [
700,
-35
],
"parameters": {
"query": "DESCRIBE {{ $json.Tables_in_tttytdb2023 }};",
"options": {},
"operation": "executeQuery"
},
"credentials": {
"mySql": {
"id": "ICakJ1LRuVl4dRTs",
"name": "db4free TTT account"
}
},
"typeVersion": 2.4
},
{
"id": "d55e841d-11ed-4ce2-8c8e-840bd807ff2c",
"name": "出力にテーブル名を追加",
"type": "n8n-nodes-base.set",
"position": [
880,
-35
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "764176d6-3c89-404d-9c71-301e8a406a68",
"name": "table",
"type": "string",
"value": "={{ $('List all tables in a database').item.json.Tables_in_tttytdb2023 }}"
}
]
},
"includeOtherFields": true
},
"typeVersion": 3.4
},
{
"id": "ca8d30d6-c1f1-4e89-8cd5-ea3648dc3b0c",
"name": "データをバイナリに変換",
"type": "n8n-nodes-base.convertToFile",
"position": [
1060,
-35
],
"parameters": {
"options": {},
"operation": "toJson"
},
"typeVersion": 1.1
},
{
"id": "2d89f901-d4e7-4fea-bd69-20b518280bbc",
"name": "ローカルにファイルを保存",
"type": "n8n-nodes-base.readWriteFile",
"position": [
1220,
-35
],
"parameters": {
"options": {},
"fileName": "./chinook_mysql.json",
"operation": "write"
},
"typeVersion": 1
},
{
"id": "04511c4f-44fa-4c23-87af-54d959e6cb2c",
"name": "ファイルからデータを抽出",
"type": "n8n-nodes-base.extractFromFile",
"position": [
920,
420
],
"parameters": {
"options": {},
"operation": "fromJson"
},
"typeVersion": 1
},
{
"id": "96f129c0-d1d4-4cbf-a24d-0b0cea18a229",
"name": "Chat Trigger",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
440,
420
],
"webhookId": "c308dec7-655c-4b79-832e-991bd8ea891f",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "4d993ed9-3bbe-4bc3-9e5b-c3d738b0e714",
"name": "AI Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1480,
300
],
"parameters": {
"text": "=Here is the database schema: {{ $json.schema }}\nHere is the user request: {{ $('Chat Trigger').item.json.chatInput }}",
"agent": "conversationalAgent",
"options": {
"humanMessage": "TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{tools}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{input}}",
"systemMessage": "Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\nHelp user to work with the MySQL database.\n\nPlease wrap any sql commands into triple quotes. You don't have a tool to run SQL, so the user will do that instead of you."
},
"promptType": "define"
},
"typeVersion": 1.6
},
{
"id": "f5749b31-b28a-4341-b57f-94ee422d2873",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
320,
-280
],
"parameters": {
"color": 3,
"width": 1065.0949045120822,
"height": 466.4256045427794,
"content": "## Run this part only once\nThis section:\n* loads a list of all tables from the database hosted on [db4free](https://db4free.net/signup.php) \n* extracts the database schema for each table and adds the table name\n* converts the schema into a binary JSON format\n* saves the schema `./chinook_mysql.json` file locally\n\n***Now you can use chat to \"talk\" to your data!*** 🎉"
},
"typeVersion": 1
},
{
"id": "6606abc9-1dcb-4dba-b7ef-e221f892eed8",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1040,
-255
],
"parameters": {
"color": 6,
"width": 312.47220527158765,
"height": 174.60585869504342,
"content": "## Pre-workflow setup \nConnect to a free MySQL server and import your database. Follow Step 1 and 2 in this [tutorial](https://blog.n8n.io/compare-databases/) for more.\n\n*The Chinook data used in this workflow is available on [GitHub](https://github.com/msimanga/chinook/tree/master/mysql).* "
},
"typeVersion": 1
},
{
"id": "c8ac730a-04ee-499d-b845-1149967d6aa2",
"name": "「Test workflow」クリック時",
"type": "n8n-nodes-base.manualTrigger",
"position": [
360,
-35
],
"parameters": {},
"typeVersion": 1
},
{
"id": "6f0b167c-e012-43e1-9892-ded05be47cf8",
"name": "付箋2",
"type": "n8n-nodes-base.stickyNote",
"position": [
324.32561050665913,
209.72072645338642
],
"parameters": {
"color": 6,
"width": 1062.678698911262,
"height": 489.29614613074125,
"content": "## On every chat message:\n\n* The workflow gets the data from the local schema file and extracts it as a JSON object. This way, we achieve two important improvements:\n * faster processing time as we don't need to fetch the schema for each table from a slow remote database\n * the Agent will know database structure without seeing the actual data\n* DB schema is then converted into a long string, JSON fields from the Chat Trigger are added before they are entered into the Agent node.\n"
},
"typeVersion": 1
},
{
"id": "3a79350c-aec1-4ad4-a2e0-679957fa420b",
"name": "付箋3",
"type": "n8n-nodes-base.stickyNote",
"position": [
1400,
-15.552780029374958
],
"parameters": {
"color": 6,
"width": 445.66588600071304,
"height": 714.7896619176862,
"content": "### LangChain AI Agent's system prompt is modified.\nIt uses only the database schema to generate SQL queries. The agent creates these queries but does not execute them. Instead, it passes them to subsequent nodes.\n\n**Example:**\n\"Can you show me the list of all German customers?\" \n\nQueries are generated only when necessary; for some requests, a query may not be needed. This is because certain questions can be answered directly without SQL execution.\n\n**Example:**\n\"Can you list me all tables?\""
},
"typeVersion": 1
},
{
"id": "0cd425db-2a8e-4f48-b749-9a082e948395",
"name": "スキーマデータとチャット入力を結合",
"type": "n8n-nodes-base.set",
"position": [
1140,
420
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "42abd24e-419a-47d6-bc8b-7146dd0b8314",
"name": "sessionId",
"type": "string",
"value": "={{ $('Chat Trigger').first().json.sessionId }}"
},
{
"id": "39244192-a1a6-42fe-bc75-a6fba1f264df",
"name": "action",
"type": "string",
"value": "={{ $('Chat Trigger').first().json.action }}"
},
{
"id": "f78c57d9-df13-43c7-89a7-5387e528107e",
"name": "chatinput",
"type": "string",
"value": "={{ $('Chat Trigger').first().json.chatInput }}"
},
{
"id": "e42b39eb-dfbd-48d9-94ed-d658bdd41454",
"name": "schema",
"type": "string",
"value": "={{ $json.data }}"
}
]
}
},
"executeOnce": true,
"typeVersion": 3.4
},
{
"id": "e4045e33-bb87-488d-8ccf-b4a94339a841",
"name": "ローカルファイルからスキーマを読み込み",
"type": "n8n-nodes-base.readWriteFile",
"position": [
680,
420
],
"parameters": {
"options": {},
"fileSelector": "./chinook_mysql.json"
},
"typeVersion": 1
},
{
"id": "367ebe95-0b87-44f6-8392-33fe65446c24",
"name": "SQL クエリを抽出",
"type": "n8n-nodes-base.set",
"position": [
1900,
340
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "ebbe194a-4b8b-44c9-ac19-03cf69d353bf",
"name": "query",
"type": "string",
"value": "={{ ($json.output.match(/SELECT[\\s\\S]*?;/i) || [])[0] || \"\" }}"
}
]
},
"includeOtherFields": true
},
"typeVersion": 3.4
},
{
"id": "b856fe78-2435-4075-97f8-ecbeecf3e780",
"name": "クエリの存在を確認",
"type": "n8n-nodes-base.if",
"position": [
2060,
340
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "2963d04d-9d79-49f9-b52a-dc8732aca781",
"operator": {
"type": "string",
"operation": "notEmpty",
"singleValue": true
},
"leftValue": "={{ $json.query }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "87162d31-2f6c-4f4a-af28-c65cbadd8ed5",
"name": "付箋4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1874,
220.45316744685329
],
"parameters": {
"color": 3,
"width": 317.8901548206743,
"height": 278.8174358200552,
"content": "## SQL query extraction\nCheck if the agent's response contains an SQL query. If it does, we extract the query using a regular expression."
},
"typeVersion": 1
},
{
"id": "b3e77333-eaa9-4d23-a78c-8a19ae074739",
"name": "付箋5",
"type": "n8n-nodes-base.stickyNote",
"position": [
1860,
-16.43746604251737
],
"parameters": {
"color": 6,
"width": 882.7611828369563,
"height": 715.7029266156915,
"content": ""
},
"typeVersion": 1
},
{
"id": "269ea79d-5f17-4764-aebb-bba31b43d8bb",
"name": "付箋7",
"type": "n8n-nodes-base.stickyNote",
"position": [
1580,
580
],
"parameters": {
"color": 3,
"width": 257.46308756569573,
"height": 108.03673727584527,
"content": "The AI Agent remembers the schema, questions, and final answers, but not data values, since queries run externally. The agent can't access database content. "
},
"typeVersion": 1
},
{
"id": "2fd1175c-4110-48be-b6bf-2251c678bc04",
"name": "付箋6",
"type": "n8n-nodes-base.stickyNote",
"position": [
2420,
0
],
"parameters": {
"color": 3,
"width": 308.8514666587585,
"height": 123.43139661532095,
"content": "- The SQL node accesses the database and executes the query. The results are then formatted for readability.\n- Both the chat response and the query result are displayed in the chat window."
},
"typeVersion": 1
},
{
"id": "61ae7f7c-1424-4ecb-8a12-78cd98e94d45",
"name": "付箋8",
"type": "n8n-nodes-base.stickyNote",
"position": [
2480,
600
],
"parameters": {
"color": 3,
"width": 250.40895053328057,
"height": 89.90186716520257,
"content": "When the agent responds without an SQL query, you receive an immediate answer with no additional processing."
},
"typeVersion": 1
},
{
"id": "cbb6d1e1-0a75-4b3a-89cd-6bd545b8d414",
"name": "クエリ結果をフォーマット",
"type": "n8n-nodes-base.set",
"position": [
2420,
140
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "f944d21f-6aac-4842-8926-4108d6cad4bf",
"name": "sqloutput",
"type": "string",
"value": "={{ Object.keys($jmespath($input.all(),'[].json')[0]).join(' | ') }} \n{{ ($jmespath($input.all(),'[].json')).map(obj => Object.values(obj).join(' | ')).join('\\n') }}"
}
]
}
},
"executeOnce": true,
"typeVersion": 3.4
},
{
"id": "d958de24-84ef-4928-a7f3-32cada09a0eb",
"name": "SQL クエリを実行",
"type": "n8n-nodes-base.mySql",
"position": [
2260,
140
],
"parameters": {
"query": "{{ $json.query }}",
"options": {},
"operation": "executeQuery"
},
"credentials": {
"mySql": {
"id": "ICakJ1LRuVl4dRTs",
"name": "db4free TTT account"
}
},
"typeVersion": 2.4
},
{
"id": "99a6dc03-1035-4866-81e4-11dc66bf98ec",
"name": "最終出力を準備",
"type": "n8n-nodes-base.set",
"position": [
2560,
420
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "aa55e186-1535-4923-aee4-e088ca69575b",
"name": "output",
"type": "string",
"value": "={{ $json.output }}\n\nSQL result:\n```markdown\n{{ $json.sqloutput }}\n```"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "9380c2f6-15d9-43e4-80a2-3019bcf5ae04",
"name": "クエリ結果とチャット回答を結合",
"type": "n8n-nodes-base.merge",
"position": [
2340,
340
],
"parameters": {
"mode": "combine",
"options": {},
"combineBy": "combineByPosition"
},
"typeVersion": 3
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "15049b13-91cb-46bd-a7a0-ad648b6f667a",
"connections": {
"4d993ed9-3bbe-4bc3-9e5b-c3d738b0e714": {
"main": [
[
{
"node": "367ebe95-0b87-44f6-8392-33fe65446c24",
"type": "main",
"index": 0
}
]
]
},
"96f129c0-d1d4-4cbf-a24d-0b0cea18a229": {
"main": [
[
{
"node": "e4045e33-bb87-488d-8ccf-b4a94339a841",
"type": "main",
"index": 0
}
]
]
},
"d958de24-84ef-4928-a7f3-32cada09a0eb": {
"main": [
[
{
"node": "cbb6d1e1-0a75-4b3a-89cd-6bd545b8d414",
"type": "main",
"index": 0
}
]
]
},
"367ebe95-0b87-44f6-8392-33fe65446c24": {
"main": [
[
{
"node": "b856fe78-2435-4075-97f8-ecbeecf3e780",
"type": "main",
"index": 0
}
]
]
},
"b7c3ca47-11b3-4378-81fa-68b2f56b295e": {
"ai_languageModel": [
[
{
"node": "4d993ed9-3bbe-4bc3-9e5b-c3d738b0e714",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"cbb6d1e1-0a75-4b3a-89cd-6bd545b8d414": {
"main": [
[
{
"node": "9380c2f6-15d9-43e4-80a2-3019bcf5ae04",
"type": "main",
"index": 0
}
]
]
},
"977c3a82-440b-4d44-9042-47a673bcb52c": {
"ai_memory": [
[
{
"node": "4d993ed9-3bbe-4bc3-9e5b-c3d738b0e714",
"type": "ai_memory",
"index": 0
}
]
]
},
"b856fe78-2435-4075-97f8-ecbeecf3e780": {
"main": [
[
{
"node": "d958de24-84ef-4928-a7f3-32cada09a0eb",
"type": "main",
"index": 0
},
{
"node": "9380c2f6-15d9-43e4-80a2-3019bcf5ae04",
"type": "main",
"index": 1
}
],
[
{
"node": "c6e9c0e2-d238-4f0b-a4c8-2271f2c8b31b",
"type": "main",
"index": 0
}
]
]
},
"ca8d30d6-c1f1-4e89-8cd5-ea3648dc3b0c": {
"main": [
[
{
"node": "2d89f901-d4e7-4fea-bd69-20b518280bbc",
"type": "main",
"index": 0
}
]
]
},
"04511c4f-44fa-4c23-87af-54d959e6cb2c": {
"main": [
[
{
"node": "0cd425db-2a8e-4f48-b749-9a082e948395",
"type": "main",
"index": 0
}
]
]
},
"54fb3362-041b-4e4f-bfea-f0bc788d8dfd": {
"main": [
[
{
"node": "d55e841d-11ed-4ce2-8c8e-840bd807ff2c",
"type": "main",
"index": 0
}
]
]
},
"d55e841d-11ed-4ce2-8c8e-840bd807ff2c": {
"main": [
[
{
"node": "ca8d30d6-c1f1-4e89-8cd5-ea3648dc3b0c",
"type": "main",
"index": 0
}
]
]
},
"4c141ae8-d2d1-45c7-bb5d-f33841d3cee6": {
"main": [
[
{
"node": "54fb3362-041b-4e4f-bfea-f0bc788d8dfd",
"type": "main",
"index": 0
}
]
]
},
"c8ac730a-04ee-499d-b845-1149967d6aa2": {
"main": [
[
{
"node": "4c141ae8-d2d1-45c7-bb5d-f33841d3cee6",
"type": "main",
"index": 0
}
]
]
},
"0cd425db-2a8e-4f48-b749-9a082e948395": {
"main": [
[
{
"node": "4d993ed9-3bbe-4bc3-9e5b-c3d738b0e714",
"type": "main",
"index": 0
}
]
]
},
"e4045e33-bb87-488d-8ccf-b4a94339a841": {
"main": [
[
{
"node": "04511c4f-44fa-4c23-87af-54d959e6cb2c",
"type": "main",
"index": 0
}
]
]
},
"9380c2f6-15d9-43e4-80a2-3019bcf5ae04": {
"main": [
[
{
"node": "99a6dc03-1035-4866-81e4-11dc66bf98ec",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
上級 - エンジニアリング, DevOps, プロダクト, 人工知能
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
データとの対話:テキストをSQLクエリおよび可視化グラフに変換
データと対話:テキストをSQLクエリおよび可視化グラフに変換
If
Set
Merge
+
If
Set
Merge
36 ノードhippolyte-hu
エンジニアリング
正規表現と AI を使って隠れたウェブサイトの API エンドポイントを発見
正規表現とAIを使って隠れたウェブサイトのAPIエンドポイントを発見する
If
Set
Html
+
If
Set
Html
58 ノードYulia
エンジニアリング
Supabase ストレージ内のファイルと対話する AI エージェント
Supabaseストレージ内のファイルと対話するAIエージェント
If
Merge
Switch
+
If
Merge
Switch
33 ノードMark Shcherbakov
エンジニアリング
データエンジニア AI Agent v3
スプレッドシート向けのAIデータ分析アシスタント、NocoDBプラットフォームを基に
Set
Noco Db Tool
Http Request
+
Set
Noco Db Tool
Http Request
10 ノードDerek Cheung
エンジニアリング
AI スマートアシスタント: Supabase ストレージと Google Drive ファイルとの対話
AIワンチャットボット:SupabaseストレージとGoogle Driveのファイルと対話
If
Set
Wait
+
If
Set
Wait
62 ノードMark Shcherbakov
エンジニアリング
n8nノードの探索(可視化リファレンスライブラリ内)
n8nノードを可視化リファレンスライブラリで探索
If
Ftp
Set
+
If
Ftp
Set
113 ノードI versus AI
その他