履歴書PDF解析(マルチモーダル視覚AI)
中級
これはHR, AI分野の自動化ワークフローで、13個のノードを含みます。主にIf, EditImage, GoogleDrive, HttpRequest, ManualTriggerなどのノードを使用、AI技術を活用したスマート自動化を実現。 リザベポPDFの解析に多モーダルビジュアルAIを使用
前提条件
- •Google Drive API認証情報
- •ターゲットAPIの認証情報が必要な場合あり
- •Google Gemini API Key
使用ノード (13)
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"meta": {
"instanceId": "408f9fb9940c3cb18ffdef0e0150fe342d6e655c3a9fac21f0f644e8bedabcd9"
},
"nodes": [
{
"id": "38da57b7-2161-415d-8473-783ccdc7b975",
"name": "ワークフロー「テスト」クリック時",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-260,
840
],
"parameters": {},
"typeVersion": 1
},
{
"id": "2cd46d91-105d-4b5e-be43-3343a9da815d",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
-780,
540
],
"parameters": {
"width": 365.05232558139534,
"height": 401.24529475392126,
"content": "## Try me out!\n\n### This workflow converts a Candidate Resume PDF to an image which is then \"read\" by a Vision Language Model (VLM). The VLM assesses if the candidate's CV is a fit for the desired role.\n\nThis approach can be employed to combat \"hidden prompts\" planted in resumes to bypass and/or manipulate automated ATS systems using AI.\n\n\n### Need Help?\nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!\n"
},
"typeVersion": 1
},
{
"id": "40bab53a-fcbc-4acc-8d59-c20b3e1b2697",
"name": "構造化出力パーサー",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
1200,
980
],
"parameters": {
"jsonSchemaExample": "{\n\t\"is_qualified\": true,\n\t\"reason\": \"\"\n}"
},
"typeVersion": 1.2
},
{
"id": "d75fb7ab-cfbc-419d-b803-deb9e99114ba",
"name": "ステージ2に進むべきか?",
"type": "n8n-nodes-base.if",
"position": [
1360,
820
],
"parameters": {
"options": {},
"conditions": {
"options": {
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "4dd69ba3-bf07-43b3-86b7-d94b07e9eea6",
"operator": {
"type": "boolean",
"operation": "true",
"singleValue": true
},
"leftValue": "={{ $json.output.is_qualified }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2
},
{
"id": "a0f56270-67c2-4fab-b521-aa6f06b0b0fd",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-380,
540
],
"parameters": {
"color": 7,
"width": 543.5706868577606,
"height": 563.6162790697684,
"content": "## 1. Download Candidate Resume\n[Read more about using Google Drive](https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-base.googledrive)\n\nFor this demonstration, we'll pull the candidate's resume PDF from Google Drive but you can just as easily recieve this resume from email or your ATS.\n\nIt should be noted that our PDF is a special test case which has been deliberately injected with an AI bypass; the bypass is a hidden prompt which aims to override AI instructions and auto-qualify the candidate... sneaky!\n\nDownload a copy of this resume here: https://drive.google.com/file/d/1MORAdeev6cMcTJBV2EYALAwll8gCDRav/view?usp=sharing"
},
"typeVersion": 1
},
{
"id": "d21fe4dd-0879-4e5a-a70d-10f09b25eee2",
"name": "履歴書をダウンロード",
"type": "n8n-nodes-base.googleDrive",
"position": [
-80,
840
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "id",
"value": "1MORAdeev6cMcTJBV2EYALAwll8gCDRav"
},
"options": {},
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "yOwz41gMQclOadgu",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "ea904365-d9d2-4f15-b7c3-7abfeb4c8c50",
"name": "付箋2",
"type": "n8n-nodes-base.stickyNote",
"position": [
200,
540
],
"parameters": {
"color": 7,
"width": 605.0267171444024,
"height": 595.3148729042731,
"content": "## 2. Convert PDF to Image(s)\n[Read more about using Stirling PDF](https://github.com/Stirling-Tools/Stirling-PDF)\n\nAI vision models can only accept images (and sometimes videos!) as non-text inputs but not PDFs at time of writing. We'll have to convert our PDF to an image in order to use it.\n\nHere, we'll use a tool called **Stirling PDF** which can provide this functionality and can be accessed via a HTTP API. Feel free to use an alternative solution if available, otherwise follow the instructions on the Stirling PDF website to set up your own instance.\n\nAdditionally, we'll reduce the resolution of our converted image to speed up the processing done by the LLM. I find that about 75% of an A4 (30x40cm) is a good balance."
},
"typeVersion": 1
},
{
"id": "cd00a47f-1ab9-46bf-8ea1-46ac899095e7",
"name": "付箋3",
"type": "n8n-nodes-base.stickyNote",
"position": [
840,
540
],
"parameters": {
"color": 7,
"width": 747.8139534883712,
"height": 603.1395348837208,
"content": "## 3. Parse Resume with Multimodal LLM\n[Read more about using Basic LLM Chain](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainllm/)\n\nMultimodal LLMs are LLMs which can accept binary inputs such as images, audio and/or video files. Most newer LLMs are by default multimodal and we'll use Google's Gemini here as an example. By processing each candidate's resume as an image, we avoid scenarios where text extraction fails due to layout issues or by picking up \"hidden\" or malicious prompts planted to subvert AI automated processing.\n\nThis vision model ensures the resume is read and understood as a human would. The hidden bypass is therefore rendered mute since the AI also cannot \"see\" the special prompt embedded in the document."
},
"typeVersion": 1
},
{
"id": "d60214c6-c67e-4433-9121-4d54f782b19d",
"name": "PDF-to-Image API",
"type": "n8n-nodes-base.httpRequest",
"position": [
340,
880
],
"parameters": {
"url": "https://stirlingpdf.io/api/v1/convert/pdf/img",
"method": "POST",
"options": {},
"sendBody": true,
"contentType": "multipart-form-data",
"bodyParameters": {
"parameters": [
{
"name": "fileInput",
"parameterType": "formBinaryData",
"inputDataFieldName": "data"
},
{
"name": "imageFormat",
"value": "jpg"
},
{
"name": "singleOrMultiple",
"value": "single"
},
{
"name": "dpi",
"value": "300"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "847de537-ad8f-47f5-a1c1-d207c3fc15ef",
"name": "変換画像のリサイズ",
"type": "n8n-nodes-base.editImage",
"position": [
530,
880
],
"parameters": {
"width": 75,
"height": 75,
"options": {},
"operation": "resize",
"resizeOption": "percent"
},
"typeVersion": 1
},
{
"id": "5fb6ac7e-b910-4dce-bba7-19b638fd817a",
"name": "Google Gemini チャットモデル",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
1000,
980
],
"parameters": {
"options": {},
"modelName": "models/gemini-1.5-pro-latest"
},
"credentials": {
"googlePalmApi": {
"id": "dSxo6ns5wn658r8N",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "2580b583-544a-47ee-b248-9cca528c9866",
"name": "候補者履歴書分析器",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
1000,
820
],
"parameters": {
"text": "=Evaluate the candidate's resume.",
"messages": {
"messageValues": [
{
"message": "=Assess the given Candiate Resume for the role of Plumber.\nDetermine if the candidate's skills match the role and if they qualify for an in-person interview."
},
{
"type": "HumanMessagePromptTemplate",
"messageType": "imageBinary"
}
]
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.4
},
{
"id": "694669c2-9cf5-43ec-8846-c0ecbc5a77ee",
"name": "付箋4",
"type": "n8n-nodes-base.stickyNote",
"position": [
280,
840
],
"parameters": {
"width": 225.51725256895617,
"height": 418.95152406706313,
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n### Data Privacy Warning!\nFor demo purposes, we're using the public online version of Stirling PDF. It is recommended to setup your own private instance of Stirling PDF before using this workflow in production."
},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"d21fe4dd-0879-4e5a-a70d-10f09b25eee2": {
"main": [
[
{
"node": "d60214c6-c67e-4433-9121-4d54f782b19d",
"type": "main",
"index": 0
}
]
]
},
"d60214c6-c67e-4433-9121-4d54f782b19d": {
"main": [
[
{
"node": "847de537-ad8f-47f5-a1c1-d207c3fc15ef",
"type": "main",
"index": 0
}
]
]
},
"847de537-ad8f-47f5-a1c1-d207c3fc15ef": {
"main": [
[
{
"node": "2580b583-544a-47ee-b248-9cca528c9866",
"type": "main",
"index": 0
}
]
]
},
"5fb6ac7e-b910-4dce-bba7-19b638fd817a": {
"ai_languageModel": [
[
{
"node": "2580b583-544a-47ee-b248-9cca528c9866",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"40bab53a-fcbc-4acc-8d59-c20b3e1b2697": {
"ai_outputParser": [
[
{
"node": "2580b583-544a-47ee-b248-9cca528c9866",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"2580b583-544a-47ee-b248-9cca528c9866": {
"main": [
[
{
"node": "d75fb7ab-cfbc-419d-b803-deb9e99114ba",
"type": "main",
"index": 0
}
]
]
},
"38da57b7-2161-415d-8473-783ccdc7b975": {
"main": [
[
{
"node": "d21fe4dd-0879-4e5a-a70d-10f09b25eee2",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
中級 - 人事, 人工知能
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
AIビジョンを使用した画像検証タスクの自動化
AI ビジュアル技術による画像検証タスクの自動化
Set
Split Out
Edit Image
+
Set
Split Out
Edit Image
11 ノードJimleuk
プロダクト
n8n、Apify、OpenAI o3 を使用したセルフホスト型 AI ディープリサーチエージェント
n8n、Apify、OpenAI o3を使用したセルフホスト型AI深度リサーチエージェント
If
Set
Code
+
If
Set
Code
87 ノードJimleuk
人工知能
AI と n8n フォームを使用して職務経歴書を提出
AIとn8nフォームを使用した職務経歴書提出処理
Form
Airtable
Form Trigger
+
Form
Airtable
Form Trigger
23 ノードJimleuk
人事
BrowserflowとGoogle Sheetsを活用したLinkedInリクエストとア破冰メッセージの自動化
Browserflow と Google Sheets を使って LinkedIn リクエストとブレイクアウトメッセージを自動化
If
Set
Sort
+
If
Set
Sort
44 ノードPollupAI
営業
OpenAIを使ったRAG応答の精度評価:ドキュメント・ベースライン指標
OpenAIによるRAG応答の精度評価:ドキュメントベースライン指標
Set
Evaluation
Http Request
+
Set
Evaluation
Http Request
25 ノードJimleuk
エンジニアリング
評価指標: 概要
評価指標: 概要
Set
Webhook
Evaluation
+
Set
Webhook
Evaluation
17 ノードJimleuk
エンジニアリング
ワークフロー情報
難易度
中級
ノード数13
カテゴリー2
ノードタイプ9
作成者
Jimleuk
@jimleukFreelance consultant based in the UK specialising in AI-powered automations. I work with select clients tackling their most challenging projects. For business enquiries, send me an email at hello@jimle.uk LinkedIn: https://www.linkedin.com/in/jimleuk/ X/Twitter: https://x.com/jimle_uk
外部リンク
n8n.ioで表示 →
このワークフローを共有