AIソナー推論で駆動されるGCE O-Level数学トピック分析と予測
中級
これはDocument Extraction, AI Summarization分野の自動化ワークフローで、14個のノードを含みます。主にSet, Html, Slack, Markdown, Wordpressなどのノードを使用。 Perplexity AI を使用して GCE O-Level 数学の予測を分析し、WordPress と Slack に投稿する
前提条件
- •Slack Bot Token または Webhook URL
- •ターゲットAPIの認証情報が必要な場合あり
使用ノード (14)
ワークフロープレビュー
ノード接続関係を可視化、ズームとパンをサポート
ワークフローをエクスポート
以下のJSON設定をn8nにインポートして、このワークフローを使用できます
{
"id": "oYrTphNZqfYV6uJX",
"meta": {
"instanceId": "b91e510ebae4127f953fd2f5f8d40d58ca1e71c746d4500c12ae86aad04c1502"
},
"name": "AI Sonar-Reasoning Powered GCE O-Level Math Topic Analysis & Prediction",
"tags": [],
"nodes": [
{
"id": "816a5f56-ea2b-49ff-b42b-4661716ee3d5",
"name": "手動トリガー",
"type": "n8n-nodes-base.manualTrigger",
"position": [
656,
-16
],
"parameters": {},
"typeVersion": 1
},
{
"id": "b6013e58-fbe9-482c-b7c6-327735bca79d",
"name": "O-Level数学シラバス取得",
"type": "n8n-nodes-base.httpRequest",
"position": [
880,
-112
],
"parameters": {
"url": "https://www.seab.gov.sg/docs/default-source/national-examinations/syllabus/olevel/2025syllabus/4048_y25_sy.pdf",
"options": {}
},
"typeVersion": 4.2
},
{
"id": "5c7e686f-72c9-48f0-a3b5-1e2b7d99b9ed",
"name": "シラバステキスト抽出",
"type": "n8n-nodes-base.extractFromFile",
"position": [
1104,
-112
],
"parameters": {
"options": {},
"operation": "text"
},
"typeVersion": 1
},
{
"id": "3655c347-a6d6-4d5b-a7dc-e1c552ddf75b",
"name": "分析データ準備",
"type": "n8n-nodes-base.set",
"position": [
1296,
-112
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "a1",
"name": "syllabus_content",
"type": "string",
"value": "={{ $json.data }}"
},
{
"id": "a2",
"name": "analysis_year",
"type": "number",
"value": "=2025"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "85229eea-e100-45a1-967e-bad53795037e",
"name": "履歴コンテキスト読み込み",
"type": "n8n-nodes-base.set",
"position": [
1024,
32
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "b1",
"name": "historical_topics",
"type": "string",
"value": "=Algebra (equations, inequalities, functions), Geometry (congruence, similarity, circle theorems), Trigonometry (ratios, identities, graphs), Statistics (data analysis, probability), Number patterns (sequences, series), Mensuration (area, volume, surface area), Coordinate geometry (gradients, equations of lines), Vectors (operations, applications), Matrices (operations, transformations), Sets (Venn diagrams, operations)"
},
{
"id": "b2",
"name": "challenging_areas",
"type": "string",
"value": "=Circle theorems and angle properties, Trigonometric identities and proofs, Probability with multiple events, Algebraic manipulation and factorization, Application problems requiring multi-step reasoning"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "b9fccdae-a80e-4091-a9ae-0feaab9bac1d",
"name": "AI分析エージェント",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1520,
-16
],
"parameters": {
"text": "=You are an expert educational analyst specializing in GCE O-Level Mathematics examinations in Singapore.\n\nAnalyze the following syllabus content and provide a comprehensive exam analysis:\n\n**Syllabus Content:**\n{{ $('Prepare Analysis Data').item.json.syllabus_content }}\n\n**Historical Context:**\nRecurring Topics: {{ $('Load Historical Context').item.json.historical_topics }}\nChallenging Areas: {{ $('Load Historical Context').item.json.challenging_areas }}\n\n**Required Output Structure (JSON format):**\n```json\n{\n \"exam_summary\": {\n \"year\": 2025,\n \"total_marks\": \"Paper 1 + Paper 2 distribution\",\n \"key_changes\": \"Notable syllabus changes for 2025\"\n },\n \"top_10_recurring_topics\": [\n {\n \"rank\": 1,\n \"topic\": \"Topic name\",\n \"frequency_percentage\": 85,\n \"typical_question_types\": \"Description\"\n }\n ],\n \"top_5_challenging_areas\": [\n {\n \"rank\": 1,\n \"area\": \"Area name\",\n \"difficulty_reason\": \"Why students struggle\",\n \"success_tips\": \"Brief study advice\"\n }\n ],\n \"topic_weightage\": {\n \"algebra\": {\"percentage\": 25, \"marks_range\": \"25-30 marks\"},\n \"geometry\": {\"percentage\": 20, \"marks_range\": \"20-25 marks\"},\n \"trigonometry\": {\"percentage\": 15, \"marks_range\": \"15-20 marks\"},\n \"statistics\": {\"percentage\": 20, \"marks_range\": \"20-25 marks\"},\n \"number_patterns\": {\"percentage\": 10, \"marks_range\": \"10-15 marks\"},\n \"others\": {\"percentage\": 10, \"marks_range\": \"10-15 marks\"}\n },\n \"predicted_questions\": [\n {\n \"prediction_number\": 1,\n \"paper\": \"Paper 1 or Paper 2\",\n \"topic_combination\": \"Topics involved\",\n \"question_type\": \"Description of question format\",\n \"confidence_score\": 85,\n \"reasoning\": \"Why this is likely based on patterns\"\n }\n ]\n}\n```\n\nProvide detailed, actionable insights based on historical exam patterns and the 2025 syllabus emphasis.",
"options": {
"systemMessage": "You are a GCE O-Level Mathematics exam specialist with deep knowledge of Singapore's education system, syllabus trends, and student learning patterns. Provide accurate, evidence-based analysis."
},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "8270de30-9c03-4711-a9e9-bae4bf2c9243",
"name": "AI出力解析",
"type": "n8n-nodes-base.set",
"position": [
1792,
-16
],
"parameters": {
"options": {}
},
"typeVersion": 3.4
},
{
"id": "cce94e46-d2a1-4624-8d08-25be02ce4c1f",
"name": "レポートフォーマット",
"type": "n8n-nodes-base.markdown",
"position": [
1952,
-16
],
"parameters": {
"options": {}
},
"typeVersion": 1
},
{
"id": "a3c4b303-c81c-41b9-b770-2abb1568c22e",
"name": "HTML変換",
"type": "n8n-nodes-base.html",
"position": [
2112,
-16
],
"parameters": {},
"typeVersion": 1.2
},
{
"id": "f56cd26a-aedc-42e8-9ecd-c119d892e4db",
"name": "WordPressに公開",
"type": "n8n-nodes-base.wordpress",
"position": [
2288,
-16
],
"parameters": {
"title": "=GCE O-Level Math Predictions {{ $('Prepare Analysis Data').item.json.analysis_year }}",
"additionalFields": {}
},
"typeVersion": 1
},
{
"id": "79d45a5b-7988-47c7-aae9-fc3c64fee16b",
"name": "Slack概要送信",
"type": "n8n-nodes-base.slack",
"position": [
2480,
-16
],
"webhookId": "9fa18884-3c76-4df3-af30-7be8b658738c",
"parameters": {
"text": "=🎓 *GCE O-Level Mathematics Exam Analysis {{ $('Prepare Analysis Data').item.json.analysis_year }} - Now Available!*\n\n📊 *Key Highlights:*\n• Top 10 recurring topics identified\n• 5 challenging areas with success tips\n• Topic weightage breakdown\n• 5 predicted question types with confidence scores\n\n📝 *Top 3 Predicted Topics:*\n{{ $('Parse AI Output').item.json.predicted_questions.slice(0, 3).map((p, i) => `${i + 1}. ${p.topic_combination} (${p.confidence_score}% confidence)`).join('\\n') }}\n\n🔗 Full report published to WordPress\n\n_Analysis based on 2025 syllabus and historical exam patterns_",
"otherOptions": {}
},
"typeVersion": 2.2
},
{
"id": "22696c5f-9c7d-489e-a6ef-f3d94b0197a4",
"name": "OpenRouterチャットモデル",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
"position": [
1520,
160
],
"parameters": {
"model": "perplexity/sonar-reasoning",
"options": {}
},
"credentials": {
"openRouterApi": {
"id": "fKnn6LL7cRFqNHDX",
"name": "OpenRouter account2"
}
},
"typeVersion": 1
},
{
"id": "e5a1c828-8bda-4c3c-87b2-55b02cc026ac",
"name": "付箋",
"type": "n8n-nodes-base.stickyNote",
"position": [
704,
176
],
"parameters": {
"width": 752,
"height": 544,
"content": "## **Introduction**\nExams create significant stress for students. This workflow automates syllabus analysis and predicts exam trends using AI, helping educators and students better prepare for GCE 'O' Level Mathematics in Singapore.\n\n## **How It Works**\nTrigger → Fetch Syllabus → Extract & Prepare Data → Load History → AI Analyze → Parse → Format → Convert → Publish → Notify\n\n## **Workflow Template**\nManual Trigger → Fetch O-Level Math Syllabus → Extract Syllabus Text → Prepare Analysis Data → Load Historical Context → AI Analysis Agent → Parse AI Output → Format Report → Convert to HTML → Publish to WordPress → Send Slack Summary\n\n## **Data Collection & AI Processing**\nHTTP retrieves O-Level Math syllabus from SEAB and extracts text. Loads 3-5 years exam history. OpenRouter compares syllabus vs trends, predicts topics with confidence scores.\n\n## **Report Generation & Publishing**\nFormats AI insights to Markdown (topics, trends, recommendations), converts to HTML. Auto-publishes to WordPress and sends Slack summary with report link.\n\n\n"
},
"typeVersion": 1
},
{
"id": "15fbf510-bf4e-488d-b2a6-781dae32ba07",
"name": "付箋1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1760,
144
],
"parameters": {
"color": 4,
"width": 592,
"height": 656,
"content": "## **Workflow Steps**\n1. Fetch & extract syllabus from SEAB site\n2. Load historical exam content\n3. AI analyzes syllabus + trends via OpenRouter model\n4. Parse and format AI output to Markdown/HTML\n5. Auto-publish report to WordPress and Slack\n\n## **Setup Instructions**\n1. Connect HTTP node to SEAB syllabus URL\n2. Configure OpenRouter AI model with API key\n3. Set WordPress and Slack credentials for publishing\n\n## **Prerequisites**\nOpenRouter account, WordPress API access, Slack webhook, SEAB syllabus link.\n\n## **Use Cases**\nPredict 2025 GCE Math topics, generate AI insights, publish summaries for educators.\n\n## **Customization**\nAdapt for other subjects or boards by changing syllabus source and analysis prompt.\n\n## **Benefits**\nEnables fast, data-driven exam forecasting and automated report publication."
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "42c008fc-1542-4479-8605-e8c219b2ec73",
"connections": {
"cce94e46-d2a1-4624-8d08-25be02ce4c1f": {
"main": [
[
{
"node": "a3c4b303-c81c-41b9-b770-2abb1568c22e",
"type": "main",
"index": 0
}
]
]
},
"816a5f56-ea2b-49ff-b42b-4661716ee3d5": {
"main": [
[
{
"node": "b6013e58-fbe9-482c-b7c6-327735bca79d",
"type": "main",
"index": 0
},
{
"node": "85229eea-e100-45a1-967e-bad53795037e",
"type": "main",
"index": 0
}
]
]
},
"a3c4b303-c81c-41b9-b770-2abb1568c22e": {
"main": [
[
{
"node": "f56cd26a-aedc-42e8-9ecd-c119d892e4db",
"type": "main",
"index": 0
}
]
]
},
"8270de30-9c03-4711-a9e9-bae4bf2c9243": {
"main": [
[
{
"node": "cce94e46-d2a1-4624-8d08-25be02ce4c1f",
"type": "main",
"index": 0
}
]
]
},
"b9fccdae-a80e-4091-a9ae-0feaab9bac1d": {
"main": [
[
{
"node": "8270de30-9c03-4711-a9e9-bae4bf2c9243",
"type": "main",
"index": 0
}
]
]
},
"f56cd26a-aedc-42e8-9ecd-c119d892e4db": {
"main": [
[
{
"node": "79d45a5b-7988-47c7-aae9-fc3c64fee16b",
"type": "main",
"index": 0
}
]
]
},
"5c7e686f-72c9-48f0-a3b5-1e2b7d99b9ed": {
"main": [
[
{
"node": "3655c347-a6d6-4d5b-a7dc-e1c552ddf75b",
"type": "main",
"index": 0
}
]
]
},
"22696c5f-9c7d-489e-a6ef-f3d94b0197a4": {
"ai_languageModel": [
[
{
"node": "b9fccdae-a80e-4091-a9ae-0feaab9bac1d",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"3655c347-a6d6-4d5b-a7dc-e1c552ddf75b": {
"main": [
[
{
"node": "b9fccdae-a80e-4091-a9ae-0feaab9bac1d",
"type": "main",
"index": 0
}
]
]
},
"85229eea-e100-45a1-967e-bad53795037e": {
"main": [
[
{
"node": "b9fccdae-a80e-4091-a9ae-0feaab9bac1d",
"type": "main",
"index": 0
}
]
]
},
"b6013e58-fbe9-482c-b7c6-327735bca79d": {
"main": [
[
{
"node": "5c7e686f-72c9-48f0-a3b5-1e2b7d99b9ed",
"type": "main",
"index": 0
}
]
]
}
}
}よくある質問
このワークフローの使い方は?
上記のJSON設定コードをコピーし、n8nインスタンスで新しいワークフローを作成して「JSONからインポート」を選択、設定を貼り付けて認証情報を必要に応じて変更してください。
このワークフローはどんな場面に適していますか?
中級 - 文書抽出, AI要約
有料ですか?
このワークフローは完全無料です。ただし、ワークフローで使用するサードパーティサービス(OpenAI APIなど)は別途料金が発生する場合があります。
関連ワークフロー
AI Sonar-Proゴールドマーケットトラッカー:ニュースと経済データに基づいた価格予測
Perplexity Sonar-Pro、FREDデータ、WordPressレポートを利用したゴールドマーケット予測システム
Set
Merge
Slack
+
Set
Merge
Slack
22 ノードCheng Siong Chin
仮想通貨取引
PDFのテンプレートを抽出
Google Sheets追跡用Llama AIモデル
Set
Code
Html
+
Set
Code
Html
24 ノードCristian Baño Belchí
文書抽出
AI駆動の同僚レビュー作業システム with 自動採点基準生成
GPT-4-nano、Slack、メール通知を使用したペアレビュー割り当ての自動化
Set
Code
Slack
+
Set
Code
Slack
22 ノードCheng Siong Chin
文書抽出
Sonar Pro AI作業評価と複数の締切提醒
Sonar Pro AIとマルチチャネル期限提醒を使用したペアレビュー割り当ての自動化
Set
Filter
Discord
+
Set
Filter
Discord
23 ノードCheng Siong Chin
文書抽出
AI-Deepseek-R1t を用いた会議交通費精算申請と旅費承認
Deepseek AI、Gmail、Google Sheetsを使った会議出張承認の自動化
If
Set
Code
+
If
Set
Code
24 ノードCheng Siong Chin
文書抽出
AI駆動のGPT-4-Turboによる課題採点と複数形式出力
GPT-4-Turboで作業の採点を自動化かつ、複数形式のレポートを生成
Set
Code
Webhook
+
Set
Code
Webhook
15 ノードCheng Siong Chin
文書抽出
ワークフロー情報
難易度
中級
ノード数14
カテゴリー2
ノードタイプ11
作成者
Cheng Siong Chin
@cschinDr. Cheng Siong CHIN serves as a Professor in Intelligent Systems Modelling and Simulation in Newcastle University, Singapore. His academic credentials include an M.Sc. in Advanced Control and Systems Engineering from The University of Manchester and a Ph.D. in Robotics from Nanyang Technological University.
外部リンク
n8n.ioで表示 →
このワークフローを共有