Analyse et routage des retours clients pilotés par l'IA, intégrant Gmail, Zendesk, Slack et Pipedrive
Ceci est uncontenant 23 nœuds.Utilise principalement des nœuds comme Set, GmailTool, SlackTool, NotionTool, ZendeskTool. Analyse et routage des retours clients pilotés par l'IA, intégrant Gmail, Zendesk, Slack et Pipedrive
- •Compte Google et informations d'identification Gmail API
- •Token Bot Slack ou URL Webhook
- •Clé API Notion
- •Clé API OpenAI
Nœuds utilisés (23)
Catégorie
{
"nodes": [
{
"id": "60256706-eabb-4ff1-abf0-78b5a9ca0869",
"name": "Déclencheur Manuel : Démarrer l'Analyse VOC",
"type": "n8n-nodes-base.manualTrigger",
"position": [
48,
368
],
"parameters": {},
"typeVersion": 1
},
{
"id": "be859333-a941-4a71-951f-eeb6adcd0e4f",
"name": "Set : Paramètres Initiaux",
"type": "n8n-nodes-base.set",
"position": [
320,
368
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "d69bdbe2-f51a-4956-9d5d-bfe3a82ec82d",
"name": "CSM email",
"type": "string",
"value": "your-email@example.com"
},
{
"id": "3efe4a59-2983-4f07-8e5c-130a5aad6fdb",
"name": "slack_billing_channel",
"type": "string",
"value": "#billing-feedback"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "c263ec19-9bdb-46fb-afde-4a17da961d3c",
"name": "Config : Définir LLM pour les Agents",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1552,
928
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4.1-mini"
},
"options": {
"temperature": 0
}
},
"typeVersion": 1.2
},
{
"id": "bf4488bd-0e20-4827-b370-77396415f7c8",
"name": "Config : Définir la Mémoire d'Agent",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
432,
592
],
"parameters": {
"sessionKey": "1",
"sessionIdType": "customKey"
},
"typeVersion": 1.3
},
{
"id": "8f128774-c198-4a13-8d19-8cf5ac19c8b8",
"name": "Agent IA : Collecter les Retours Clients",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
736,
368
],
"parameters": {
"text": "=- Get **ALL** the mails sent after {{Date.now() - 7 * 24 * 60 * 60 * 1000}} from the user {{ $('Set: Initial Parameters').item.json['CSM email'] }}. Return only the Subject and the snippet.\n- Get **ALL** the messages from Slack return the user ID as customerId.\n- Get **ALL** the notes from Pipedrive. Use person_id as the customerId\n- Get **ALL** the tickets from Zendesk. Use requester_id as customerId",
"options": {},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 2.2
},
{
"id": "6b70f528-bd39-4758-9d04-6b3ff93af6ff",
"name": "IA : Structurer les Données de Retour",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
1184,
592
],
"parameters": {
"autoFix": true,
"jsonSchemaExample": "\n [{\n \"source\": \"Zendesk | Gmail | Slack | Pipedrive\",\n \"customerId\": \"...\",\n \"messageId\": \"\",\n \"subject\": \"...\",\n \"text\": \"...\"\n}]\n\n"
},
"typeVersion": 1.3
},
{
"id": "7c5791aa-2842-47af-818b-004af9685455",
"name": "Outil : Obtenir les Messages Gmail",
"type": "n8n-nodes-base.gmailTool",
"position": [
576,
592
],
"webhookId": "d4a1dd6b-781c-4c44-b6a6-2d84a5542281",
"parameters": {
"filters": {
"sender": "=",
"receivedAfter": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Received_After', ``, 'string') }}"
},
"operation": "getAll",
"returnAll": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Return_All', ``, 'boolean') }}"
},
"typeVersion": 2.1
},
{
"id": "fbca39a8-6593-4cdb-a582-3bb81d18cb3a",
"name": "Outil : Obtenir les Notes Pipedrive",
"type": "n8n-nodes-base.pipedriveTool",
"position": [
736,
592
],
"parameters": {
"resource": "note",
"operation": "getAll",
"additionalFields": {}
},
"typeVersion": 1
},
{
"id": "a833e7b4-6510-44a5-934a-9d3b46289717",
"name": "Outil : Obtenir les Tickets Zendesk",
"type": "n8n-nodes-base.zendeskTool",
"position": [
880,
592
],
"parameters": {
"options": {},
"operation": "getAll"
},
"typeVersion": 1
},
{
"id": "28a49bba-62fa-4896-8604-098903b84450",
"name": "Outil : Rechercher les Messages Slack",
"type": "n8n-nodes-base.slackTool",
"position": [
1024,
592
],
"webhookId": "cfa05622-054d-4981-8b27-79a0c88bfaea",
"parameters": {
"query": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Search_Query', ``, 'string') }}",
"options": {
"searchChannel": ""
},
"operation": "search",
"authentication": "oAuth2"
},
"typeVersion": 2.3
},
{
"id": "b9212f35-c028-481e-908b-12aa3324ac25",
"name": "Export vers Sheets",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
1552,
368
],
"parameters": {
"text": "=Prompt:\nYou are analyzing raw customer feedback from multiple sources (Gmail, Slack, Pipedrive, Zendesk).\nYour task: compress the \"text\" of each feedback into a concise signal (1–2 sentences max) that captures the core issue, request, or sentiment without losing meaning.\n\nRules:\n\t•\tStrip away greetings, signatures, and filler.\n\t•\tKeep specific product terms, error codes, or feature names if present.\n\t•\tNeutral, factual tone (don’t add assumptions).\n\t•\tIf the text is vague, summarize it at the same level of vagueness.\n\t•\tOutput only the summary text, no extra commentary.\n\nExample:\n\t•\tInput: “Hi team, I’ve tried three times to update my billing info but the system keeps failing with error 502. Can someone help?”\n\t•\tOutput: Customer unable to update billing info due to repeated error 502. \n\nHere is the content:\n{{ JSON.stringify($json.output) }}",
"batching": {
"batchSize": 5
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.7
},
{
"id": "7ec417ac-bc65-4c9e-a1f7-dc3d295403e0",
"name": "Chaîne IA : Extraire les Signaux Clés",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
1696,
592
],
"parameters": {
"jsonSchemaExample": "[\n\t{\"original_text\": \"\",\n\t\"signals\": [\"\", \"\"]\n}]"
},
"typeVersion": 1.3
},
{
"id": "09797f66-2ce6-4392-afb4-a646ba733799",
"name": "IA : Structurer les Signaux Clés",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
1904,
368
],
"parameters": {
"text": "=Prompt:\nYou will receive a set of short customer feedback signals.\nYour task: group them by shared topic or problem and assign each group a clear, human-readable label.\n\nRules:\n\t•\tLabels should be broad enough to cover all items in the group, but still actionable (e.g. Billing, Onboarding, Performance, Feature Requests).\n\t•\tAvoid vague labels like General Feedback unless no pattern exists.\n\t•\tEach cluster must include:\n\t•\tLabel\n\t•\tCount of items\n\t•\tRepresentative examples (1–3 feedback snippets).\n\n {{ JSON.stringify($json.output) }}",
"batching": {},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.7
},
{
"id": "d31b8993-f7c4-496f-9515-ae2e39e84f17",
"name": "Chaîne IA : Regrouper les Signaux par Thèmes",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
2048,
592
],
"parameters": {
"jsonSchemaExample": "[\n {\n \"label\": \"Billing\",\n \"count\": 8,\n \"examples\": [\n \"Unable to update billing info due to error 502\",\n \"Invoice shows wrong amount\"\n ]\n }\n]"
},
"typeVersion": 1.3
},
{
"id": "b26017dd-99f0-4033-9fb4-cfcf3be03c14",
"name": "IA : Structurer les Thèmes Groupés",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
2320,
368
],
"parameters": {
"text": "=Prompt:\nYou will receive a list of feedback clusters, each with a label, count, and examples.\nFirst you will send the processed input to \"{{ $('Set: Initial Parameters').item.json['CSM email'] }}\" with the subject \"Weekly digest\"\nYour task: decide the correct destination action for each cluster based on the label and the count if it is superior to 1. Each message will have the examples in it.\n\n## Routing Rules:\n### Performance / Feature gaps → Product\n - Create a zendesk ticket with the label as the title and the examples as the description\n### Billing / Contract issues → Finance or Sales Ops\n - Post message to Slack channel {{ $('Set: Initial Parameters').item.json.slack_billing_channel }} with the examples as the text\n### Onboarding / Training → CS Enablement\n - Create Notion task with the label as the title and the examples as the content\n### High-risk sentiment / VIP account → CS Manager\n - Send direct email to cs Manager \"{{ $('Set: Initial Parameters').item.json['CSM email'] }}\" with tzhe subject \"Problem with the software\" and the examples as the text\n### Sales and customer engagement\n - Send direct email to cs Manager \"{{ $('Set: Initial Parameters').item.json['CSM email'] }}\" with the subject \"Customer engagement\" and the examples as the text\n\n### Client Management and Proposals\n - Send direct email to cs Manager \"{{ $('Set: Initial Parameters').item.json['CSM email'] }}\" with the subject \"Client Management and Proposals\" with the examples as the text\n \nIf the cluster doesn’t fit above, mark as \"unassigned\" but keep it in the output.\nThe input:\n {{ JSON.stringify($json.output) }}",
"options": {},
"promptType": "=define"
},
"typeVersion": 2.2
},
{
"id": "ebefbd63-8ea6-49e3-be48-4aaf1b4f7011",
"name": "Export vers Sheets",
"type": "n8n-nodes-base.zendeskTool",
"position": [
2320,
592
],
"parameters": {
"description": "Ticket generated by n8n",
"jsonParameters": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('JSON_Parameters', ``, 'boolean') }}",
"additionalFields": {}
},
"typeVersion": 1
},
{
"id": "2b0c3dc2-cf60-4d2b-8127-4141d34e7bee",
"name": "Agent IA : Router les Thèmes vers des Actions",
"type": "n8n-nodes-base.gmailTool",
"position": [
2464,
592
],
"webhookId": "127092c9-48cd-40be-9d99-afd264bd95fb",
"parameters": {
"sendTo": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('To', ``, 'string') }}",
"message": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Message', ``, 'string') }}",
"options": {},
"subject": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Subject', ``, 'string') }}",
"emailType": "text"
},
"typeVersion": 2.1
},
{
"id": "b47fc28d-72f5-42f9-a661-254a392ae443",
"name": "Outil : Créer un Ticket __PROTECTED_30__",
"type": "n8n-nodes-base.notionTool",
"position": [
2608,
592
],
"parameters": {
"title": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('Title', ``, 'string') }}",
"simple": false,
"options": {},
"resource": "databasePage",
"databaseId": {
"__rl": true,
"mode": "id",
"value": ""
},
"propertiesUi": {
"propertyValues": [
{
"key": "Content|rich_text",
"textContent": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('propertyValues0_Text', ``, 'string') }}"
}
]
}
},
"notesInFlow": false,
"typeVersion": 2.2
},
{
"id": "fdac92b0-5b36-4fdc-a384-93c2d6c20cc6",
"name": "Outil : Envoyer une Alerte par Email",
"type": "n8n-nodes-base.stickyNote",
"position": [
704,
176
],
"parameters": {
"color": 7,
"width": 380,
"height": 128,
"content": "### Data Gathering Agent\nThis AI Agent's job is to collect all recent customer interactions.\nIt uses its tools (Gmail, Pipedrive, Zendesk, Slack) to fetch the raw data based on the initial prompt."
},
"typeVersion": 1
},
{
"id": "ab1edac7-c359-433a-bad5-70c876d9cfb1",
"name": "Outil : Créer une Page __PROTECTED_51__",
"type": "n8n-nodes-base.stickyNote",
"position": [
1616,
160
],
"parameters": {
"color": 7,
"width": 476,
"height": 152,
"content": "### AI Analysis Chain\nThis chain processes the raw data in two steps:\n1. **Signal Extraction:** The first LLM Chain reads all the raw text and compresses it into concise 'signals'.\n2. **Clustering:** The second LLM Chain takes these signals and groups them into actionable topics (e.g., 'Billing', 'Performance')."
},
"typeVersion": 1
},
{
"id": "0e500b93-135e-4a03-91e8-2159cc58718b",
"name": "Note : Collecte de Données",
"type": "n8n-nodes-base.stickyNote",
"position": [
2224,
160
],
"parameters": {
"color": 7,
"width": 412,
"height": 152,
"content": "### Action & Routing Agent\nThis final AI Agent acts as a dispatcher. It analyzes the clustered topics and follows a set of 'Routing Rules' in its prompt to decide which action to take.\nIt then uses its tools to send the information to the correct destination (Zendesk, Slack, Notion, or Email)."
},
"typeVersion": 1
},
{
"id": "0642f4ae-f111-4446-9e9a-c9bb0c1e609c",
"name": "Note : Chaîne d'Analyse",
"type": "n8n-nodes-base.stickyNote",
"position": [
16,
-320
],
"parameters": {
"color": 4,
"width": 980,
"height": 392,
"content": "### **Voice of Customer AI Analysis & Routing**\nThis workflow automates the process of gathering customer feedback from multiple sources, using a chain of AI agents to analyze, summarize, and categorize it, and finally routing the insights to the appropriate teams for action.\n\n**How it Works:**\n1. **Gathers Data:** An AI Agent uses tools to collect recent messages from Gmail, Pipedrive, Zendesk, and Slack.\n2. **Analyzes & Summarizes:** An AI Chain processes the raw text, first extracting key 'signals' and then clustering those signals into topics (e.g., 'Billing', 'Feature Request').\n3. **Routes for Action:** A final AI Agent analyzes the topics and uses tools to create Zendesk tickets, send Slack messages, create Notion pages, or send email alerts based on a set of rules.\n\n### 🚀 **How to Set Up**\n1. **Configure Credentials:** Add your credentials for all the 'Tool' nodes and the `Config: Set LLM for Agents` node.\n2. **Set Initial Parameters:** In the `Set: Initial Parameters` node, update the placeholder email address and the Slack channel name for billing alerts.\n3. **Update Slack Search Channel:** In the `Tool: Search Slack Messages` node, set the channel you want the agent to search for feedback in.\n4. **Activate Workflow:** Once configured, activate the workflow."
},
"typeVersion": 1
},
{
"id": "eff608be-8f8d-4379-a9f0-5ab1beb26b3d",
"name": "Note : Agent d'Action",
"type": "n8n-nodes-base.stickyNote",
"position": [
32,
960
],
"parameters": {
"color": 6,
"width": 432,
"height": 176,
"content": "## Contact me\n- If you need any modification to this workflow\n- if you need some help with this workflow\n- Or if you need any workflow in n8n, Make, or Langchain / Langgraph\n\nWrite to me: [thomas@pollup.net](<mailto:thomas@pollup.net>)"
},
"typeVersion": 1
}
],
"connections": {
"2b0c3dc2-cf60-4d2b-8127-4141d34e7bee": {
"ai_tool": [
[
{
"node": "b26017dd-99f0-4033-9fb4-cfcf3be03c14",
"type": "ai_tool",
"index": 0
}
]
]
},
"be859333-a941-4a71-951f-eeb6adcd0e4f": {
"main": [
[
{
"node": "8f128774-c198-4a13-8d19-8cf5ac19c8b8",
"type": "main",
"index": 0
}
]
]
},
"bf4488bd-0e20-4827-b370-77396415f7c8": {
"ai_memory": [
[
{
"node": "8f128774-c198-4a13-8d19-8cf5ac19c8b8",
"type": "ai_memory",
"index": 0
}
]
]
},
"b47fc28d-72f5-42f9-a661-254a392ae443": {
"ai_tool": [
[
{
"node": "b26017dd-99f0-4033-9fb4-cfcf3be03c14",
"type": "ai_tool",
"index": 0
}
]
]
},
"7c5791aa-2842-47af-818b-004af9685455": {
"ai_tool": [
[
{
"node": "8f128774-c198-4a13-8d19-8cf5ac19c8b8",
"type": "ai_tool",
"index": 0
}
]
]
},
"7ec417ac-bc65-4c9e-a1f7-dc3d295403e0": {
"ai_outputParser": [
[
{
"node": "ebefbd63-8ea6-49e3-be48-4aaf1b4f7011",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"fbca39a8-6593-4cdb-a582-3bb81d18cb3a": {
"ai_tool": [
[
{
"node": "8f128774-c198-4a13-8d19-8cf5ac19c8b8",
"type": "ai_tool",
"index": 0
}
]
]
},
"a833e7b4-6510-44a5-934a-9d3b46289717": {
"ai_tool": [
[
{
"node": "8f128774-c198-4a13-8d19-8cf5ac19c8b8",
"type": "ai_tool",
"index": 0
}
]
]
},
"c263ec19-9bdb-46fb-afde-4a17da961d3c": {
"ai_languageModel": [
[
{
"node": "6b70f528-bd39-4758-9d04-6b3ff93af6ff",
"type": "ai_languageModel",
"index": 0
},
{
"node": "8f128774-c198-4a13-8d19-8cf5ac19c8b8",
"type": "ai_languageModel",
"index": 0
},
{
"node": "ebefbd63-8ea6-49e3-be48-4aaf1b4f7011",
"type": "ai_languageModel",
"index": 0
},
{
"node": "09797f66-2ce6-4392-afb4-a646ba733799",
"type": "ai_languageModel",
"index": 0
},
{
"node": "b26017dd-99f0-4033-9fb4-cfcf3be03c14",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"6b70f528-bd39-4758-9d04-6b3ff93af6ff": {
"ai_outputParser": [
[
{
"node": "8f128774-c198-4a13-8d19-8cf5ac19c8b8",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"ebefbd63-8ea6-49e3-be48-4aaf1b4f7011": {
"main": [
[
{
"node": "09797f66-2ce6-4392-afb4-a646ba733799",
"type": "main",
"index": 0
}
]
]
},
"8f128774-c198-4a13-8d19-8cf5ac19c8b8": {
"main": [
[
{
"node": "ebefbd63-8ea6-49e3-be48-4aaf1b4f7011",
"type": "main",
"index": 0
}
]
]
},
"60256706-eabb-4ff1-abf0-78b5a9ca0869": {
"main": [
[
{
"node": "be859333-a941-4a71-951f-eeb6adcd0e4f",
"type": "main",
"index": 0
}
]
]
},
"09797f66-2ce6-4392-afb4-a646ba733799": {
"main": [
[
{
"node": "b26017dd-99f0-4033-9fb4-cfcf3be03c14",
"type": "main",
"index": 0
}
]
]
},
"28a49bba-62fa-4896-8604-098903b84450": {
"ai_tool": [
[
{
"node": "8f128774-c198-4a13-8d19-8cf5ac19c8b8",
"type": "ai_tool",
"index": 0
}
]
]
},
"d31b8993-f7c4-496f-9515-ae2e39e84f17": {
"ai_outputParser": [
[
{
"node": "09797f66-2ce6-4392-afb4-a646ba733799",
"type": "ai_outputParser",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Avancé
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
PollupAI
@zeerobugWe create bespoke AI solutions, automations and agents that help your business as it scales.
Partager ce workflow