Recherche de profils LinkedIn en temps réel et prospection AI (avec Apify, Gemini et Sheets)
Ceci est unLead Generation, Multimodal AIworkflow d'automatisation du domainecontenant 20 nœuds.Utilise principalement des nœuds comme If, Limit, GoogleSheets, Apify, ScheduleTrigger. Utiliser Apify, Gemini et Sheets pour automatiser la recherche de profils LinkedIn et le e-mailing
- •Informations d'identification Google Sheets API
- •Clé API Google Gemini
Nœuds utilisés (20)
Catégorie
{
"id": "xkdknceWGy7eT6B0",
"meta": {
"instanceId": "1a54c41d9050a8f1fa6f74ca858828ad9fb97b9fafa3e9760e576171c531a787"
},
"name": "Live-Automate LinkedIn Profile Research & AI Outreach with Apify, Gemini & Sheets",
"tags": [],
"nodes": [
{
"id": "ecbfc577-7f4d-448c-8c70-4c6a80ba7629",
"name": "Obtenir la/les ligne(s) dans la feuille",
"type": "n8n-nodes-base.googleSheets",
"position": [
-1792,
336
],
"parameters": {
"options": {},
"sheetName": {
"__rl": true,
"mode": "list",
"value": 1023079571,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1nIGlVREvoz7iyCsOmCgqRXgKFFQZIVckV6a1KnDGpjM/edit#gid=1023079571",
"cachedResultName": "Sheet10"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1nIGlVREvoz7iyCsOmCgqRXgKFFQZIVckV6a1KnDGpjM",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1nIGlVREvoz7iyCsOmCgqRXgKFFQZIVckV6a1KnDGpjM/edit?usp=drivesdk",
"cachedResultName": "MLOps CXOs Bay Area"
}
},
"typeVersion": 4.7
},
{
"id": "efe97c07-f2d4-4f90-9f21-a503ebbd4103",
"name": "Limite",
"type": "n8n-nodes-base.limit",
"position": [
-1360,
320
],
"parameters": {},
"typeVersion": 1
},
{
"id": "4f2e62e8-7e5e-434b-80f7-c2197ad1950c",
"name": "Obtenir les éléments du jeu de données",
"type": "@apify/n8n-nodes-apify.apify",
"position": [
-944,
320
],
"parameters": {
"offset": {},
"resource": "Datasets",
"datasetId": "={{ $json.defaultDatasetId }}"
},
"typeVersion": 1
},
{
"id": "b8bdd09a-1e75-4a13-9fee-75ffc305fa67",
"name": "Ajouter ou mettre à jour une ligne dans la feuille",
"type": "n8n-nodes-base.googleSheets",
"position": [
-672,
320
],
"parameters": {
"columns": {
"value": {
"LinkedIn": "={{ $('Limit').item.json.LinkedIn }}",
"Profile Data": "=About : {{ $json.basic_info.about }}\n\n{{ $json.experience.map((exp, i) => \n \"Experience \" + (i+1) + \"\\n\" +\n \"Title: \" + exp.title + \"\\n\" +\n \"Company: \" + exp.company + \"\\n\" +\n \"Location: \" + exp.location + \"\\n\" +\n \"Description: \" + exp.description\n).join(\"\\n\\n\") }}\n\n"
},
"schema": [
{
"id": "First Name",
"type": "string",
"display": true,
"required": false,
"displayName": "First Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Last Name",
"type": "string",
"display": true,
"required": false,
"displayName": "Last Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Job Title",
"type": "string",
"display": true,
"required": false,
"displayName": "Job Title",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Location",
"type": "string",
"display": true,
"required": false,
"displayName": "Location",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "LinkedIn",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "LinkedIn",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Company Name",
"type": "string",
"display": true,
"required": false,
"displayName": "Company Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Profile Data",
"type": "string",
"display": true,
"required": false,
"displayName": "Profile Data",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Subject",
"type": "string",
"display": true,
"required": false,
"displayName": "Subject",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Email Body",
"type": "string",
"display": true,
"required": false,
"displayName": "Email Body",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"LinkedIn"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": 1023079571,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1nIGlVREvoz7iyCsOmCgqRXgKFFQZIVckV6a1KnDGpjM/edit#gid=1023079571",
"cachedResultName": "Sheet10"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1nIGlVREvoz7iyCsOmCgqRXgKFFQZIVckV6a1KnDGpjM",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1nIGlVREvoz7iyCsOmCgqRXgKFFQZIVckV6a1KnDGpjM/edit?usp=drivesdk",
"cachedResultName": "MLOps CXOs Bay Area"
}
},
"typeVersion": 4.7
},
{
"id": "0d58b6ca-bd4d-442b-958a-6e54c8fcb9b0",
"name": "Obtenir la/les ligne(s) dans la feuille1",
"type": "n8n-nodes-base.googleSheets",
"position": [
-400,
320
],
"parameters": {
"options": {},
"sheetName": {
"__rl": true,
"mode": "list",
"value": 1023079571,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1nIGlVREvoz7iyCsOmCgqRXgKFFQZIVckV6a1KnDGpjM/edit#gid=1023079571",
"cachedResultName": "Sheet10"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1nIGlVREvoz7iyCsOmCgqRXgKFFQZIVckV6a1KnDGpjM",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1nIGlVREvoz7iyCsOmCgqRXgKFFQZIVckV6a1KnDGpjM/edit?usp=drivesdk",
"cachedResultName": "MLOps CXOs Bay Area"
}
},
"typeVersion": 4.7
},
{
"id": "0ca835dc-bc3f-49bf-85d8-08a8d41d3502",
"name": "Structured Output Parser",
"type": "@n8n/n8n-nodes-langchain.outputParserStructured",
"position": [
240,
512
],
"parameters": {
"jsonSchemaExample": "{\n \"subject\": \"A short, catchy, question-based subject line\",\n \"email_body\": \"The full email body, 100-120 words, without any salutation or sign-off.\"\n}"
},
"typeVersion": 1.3
},
{
"id": "d1412a37-4f94-4efa-aac8-ba7f129b2bb7",
"name": "Google Gemini Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
64,
512
],
"parameters": {
"options": {}
},
"typeVersion": 1
},
{
"id": "6e9c4aac-17fc-4b21-a832-038b6571a52e",
"name": "Schedule Trigger",
"type": "n8n-nodes-base.scheduleTrigger",
"position": [
-2000,
336
],
"parameters": {
"rule": {
"interval": [
{
"field": "minutes",
"minutesInterval": 2
}
]
}
},
"typeVersion": 1.2
},
{
"id": "27f7cb9e-f89a-4496-b2ff-0cd8fb0cf6af",
"name": "Note adhésive",
"type": "n8n-nodes-base.stickyNote",
"position": [
-2048,
80
],
"parameters": {
"color": 2,
"width": 384,
"height": 416,
"content": "## ⏰ Schedule Trigger & 📄 Google Sheets (Input)\nThis part of the workflow runs every 2 minutes. \nIt fetches new rows (LinkedIn URLs and lead data) from the CRM sheet. \nOnly leads without Profile Data or Email drafts move forward.\n"
},
"typeVersion": 1
},
{
"id": "20b443fd-25df-4397-b167-cfa1ae1616fc",
"name": "Note adhésive1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1616,
80
],
"parameters": {
"color": 6,
"width": 384,
"height": 416,
"content": "## 🔍 If Check & ⚖️ Limit\n1. The **If node** ensures only leads missing Profile Data and Subject are processed. \n\n2. The **Limit node** controls batch size to prevent Apify overload or LinkedIn blocks. \n\nKeeps the workflow safe & efficient.\n"
},
"typeVersion": 1
},
{
"id": "fd519317-971a-4cbf-a891-dcb61965c30f",
"name": "Note adhésive2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1200,
80
],
"parameters": {
"color": 4,
"width": 384,
"height": 416,
"content": "## 🤖 Apify Actor & 📂 Dataset\n1. Runs the **LinkedIn Profile Scraper** actor on Apify for each LinkedIn URL. \n\n2. The Dataset node fetches structured results (About, Experience, Roles, Companies). \n\nThis enriches leads with detailed career data.\n"
},
"typeVersion": 1
},
{
"id": "5b2af68b-9acb-4021-9211-ea9f947cffbf",
"name": "Note adhésive3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-768,
64
],
"parameters": {
"color": 5,
"width": 288,
"height": 432,
"content": "## 💾 Google Sheets (Profile Data)\nAppends enriched profile details into the \"Profile Data\" column in Google Sheets. \nNow each lead row includes About + Experience insights, ready for email personalisation.\n\n"
},
"typeVersion": 1
},
{
"id": "5fbf3fc9-7a32-46b3-92a1-95758b9a1337",
"name": "Note adhésive4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-432,
80
],
"parameters": {
"color": 3,
"width": 368,
"height": 384,
"content": "## 📄 Get Rows Again & 🔍 If Check (Email)\n1. Pulls updated rows after scraping. \n\n2. Checks if Profile Data exists but \nSubject + Email Body are still empty. \n\nEnsures only complete profiles go into email generation.\n"
},
"typeVersion": 1
},
{
"id": "6b63c91d-a436-4c1d-8d1c-3e5b3f84194e",
"name": "Note adhésive5",
"type": "n8n-nodes-base.stickyNote",
"position": [
0,
0
],
"parameters": {
"width": 368,
"height": 464,
"content": "## 🧠 LLM Chain (Gemini via LangChain)\n1. Gemini is instructed to act as an expert B2B cold email copywriter. \n\n2. It generates personalised subject lines & email bodies using career insights, achievements, and context. \n\n3. Parser ensures Gemini’s response is valid JSON with \"subject\" + \"email_body\".\n\nResult: high-relevance outreach emails.\n \n"
},
"typeVersion": 1
},
{
"id": "36ffcba7-23b8-45fc-b7dd-612f8537c293",
"name": "Note adhésive6",
"type": "n8n-nodes-base.stickyNote",
"position": [
416,
80
],
"parameters": {
"color": 5,
"width": 320,
"height": 384,
"content": "## 💾 Google Sheets (Final Email)\nFinal email drafts are stored in Google Sheets alongside LinkedIn URL & Profile Data. \nEach lead row is now fully ready for outreach 🚀.\n"
},
"typeVersion": 1
},
{
"id": "6bcd2902-cf7c-4235-ad92-d8ea28392af4",
"name": "Vérifier les profils sans données",
"type": "n8n-nodes-base.if",
"position": [
-1568,
336
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "b8ddddfc-54ae-4815-aea8-edc05959cc11",
"operator": {
"type": "string",
"operation": "empty",
"singleValue": true
},
"leftValue": "={{ $json[\"Profile Data\"] }}",
"rightValue": ""
},
{
"id": "5b0584d8-cfe8-4758-b097-cb0ecd87f5e4",
"operator": {
"type": "string",
"operation": "empty",
"singleValue": true
},
"leftValue": "={{ $json.Subject }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "77f3dbf8-9218-44cf-a03f-feacfa4a1906",
"name": "Exécute l'acteur d'extraction de profil",
"type": "@apify/n8n-nodes-apify.apify",
"position": [
-1152,
320
],
"parameters": {
"actorId": {
"__rl": true,
"mode": "list",
"value": "VhxlqQXRwhW8H5hNV",
"cachedResultUrl": "https://console.apify.com/actors/VhxlqQXRwhW8H5hNV/input",
"cachedResultName": "Linkedin Profile Details Scraper + EMAIL (No Cookies Required) (apimaestro/linkedin-profile-detail)"
},
"timeout": {},
"customBody": "={\n \"includeEmail\": false,\n \"username\": \"{{ $json.LinkedIn }}\"\n}"
},
"typeVersion": 1
},
{
"id": "02725c27-8264-4b8d-a725-18947a0c8b6b",
"name": "Vérifier les profils sans brouillons d'e-mail",
"type": "n8n-nodes-base.if",
"position": [
-208,
320
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "dcf02764-abdc-4eca-8022-b0c585301927",
"operator": {
"type": "string",
"operation": "notEmpty",
"singleValue": true
},
"leftValue": "={{ $json[\"Profile Data\"] }}",
"rightValue": ""
},
{
"id": "87fc4d1b-97e7-4fcd-af85-f1414d476b67",
"operator": {
"type": "string",
"operation": "empty",
"singleValue": true
},
"leftValue": "={{ $json.Subject }}",
"rightValue": ""
},
{
"id": "4a7ddabd-14bd-429f-97e3-513abf6c62f8",
"operator": {
"type": "string",
"operation": "empty",
"singleValue": true
},
"leftValue": "={{ $json[\"Email Body\"] }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "f81e7880-4ae7-4f32-864a-05bb176a9e58",
"name": "Générateur d'e-mails hyper personnalisés",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
80,
304
],
"parameters": {
"text": "=**Act as an expert B2B cold email copywriter.** Your specialty is writing highly personalized, concise, and compelling emails that get replies from busy executives. Your style is peer-to-peer, respectful, and avoids generic sales jargon.\n\n\n\n**Your Goal:** Generate 1 distinct email draft to a prospect based on their professional profile. Each email must feel like I have personally researched them and understood their career journey.\n\n\n\n**My Context:**\n\n\n* **My Company/Service:** We offer MLOps solutions that help companies significantly reduce their cloud costs for AI and machine learning workloads without sacrificing performance.\n\n\n* **My Core Value Proposition:** We help tech leaders ship AI features faster and more profitably by optimizing their infrastructure.\n\n\n* **My Call to Action (CTA):** An offer for a complimentary, no-obligation audit of their current ML infrastructure to identify immediate cost-saving opportunities.\n\n\n\n**Prospect's Profile:**\n\n\nFULL PROFILE DETAILS HERE \nFirst Name: {{ $json['First Name'] }}\nLast Name: {{ $json['Last Name'] }}\nJob Title: {{ $json['Job Title'] }}\nCompany Name: {{ $json['Company Name'] }}\nProfile Data: {{ $json['Profile Data'] }}\n\n**Instructions for Crafting the Emails:**\n\n\n\n1. **Scrutinize the Profile:** Read the entire profile provided. Do not just look at the current job title. Instead, identify the most unique and compelling \"nuggets\" of information. Look for:\n\n\n * **Unusual Career Paths:** (e.g., from SysAdmin to VP of Product, or Trader to COO).\n\n\n * **Long Tenure / Promotions:** (e.g., spending 9+ years at one company and rising through the ranks).\n\n\n * **Specific, Quantifiable Achievements:** (e.g., \"scaled to 4M members\").\n\n\n * **\"Boomerang\" Employment:** (e.g., leaving a company and returning later in a more senior role).\n\n\n * **Consistent Themes:** (e.g., a career-long focus on \"health and wealth outcomes\").\n\n\n * **Past Roles at well-known companies** that are relevant to their current role.\n\n\n\n2. **Create a \"Hook\" from a Nugget:** Start each email with a genuine, specific observation based on one of these nuggets. This is the most critical step.\n\n\n * **Good Example:** \"Your 9-year journey at Wanderu, from Director to leading both Product & Technology, is incredibly impressive.\"\n\n\n * **Bad Example:** \"I saw on your LinkedIn profile that you are the VP at Wanderu.\"\n\n\n\n3. **Build a \"Bridge\":** Immediately connect your observation (the Hook) to a relevant business problem that the prospect likely faces in their *current* role. The problem should be tailored to their title:\n\n\n * **For a CTO/VP Engineering:** Frame the problem around infrastructure complexity, scalability, and technical debt.\n\n\n * **For a COO/GM:** Frame the problem around operational efficiency, P&L, gross margins, and profitability (COGS).\n\n\n * **For a VP Product:** Frame the problem around speed-to-market, feature ROI, and the budget for new initiatives.\n\n\n\n4. **Introduce the Solution:** Seamlessly introduce my service (MLOps for cost reduction) as the direct solution to the problem you just framed. Use my Core Value Proposition here.\n\n\n\n5. **Deliver the Call to Action:** End with the specific, low-friction CTA I provided.\n\n\n\n**Final Output Requirements:**\n\n\n* Provide 1 distinct drafts, each using a different \"nugget\" or angle for the hook.\n\n\n* Keep each email under 150 words.\n\n\n* Use a confident, peer-level tone. Avoid overly formal or submissive language.\n\n\n* Create a compelling, short subject line for each draft.\n\nCritical Information:\n- The output should be divided into \nsubject: \"Subject line\"\nBody: \"Content for email\"\n- Each mail should be different to other one.",
"batching": {},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.7
},
{
"id": "556499f4-f086-45bf-aad7-90e78c4dfc5b",
"name": "Sortie finale",
"type": "n8n-nodes-base.googleSheets",
"position": [
512,
304
],
"parameters": {
"columns": {
"value": {
"Subject": "={{ $json.output.subject }}",
"LinkedIn": "={{ $('Check Profiles with No Email Drafts').item.json.LinkedIn }}",
"Email Body": "={{ $json.output.email_body }}"
},
"schema": [
{
"id": "First Name",
"type": "string",
"display": true,
"required": false,
"displayName": "First Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Last Name",
"type": "string",
"display": true,
"required": false,
"displayName": "Last Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Job Title",
"type": "string",
"display": true,
"required": false,
"displayName": "Job Title",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Location",
"type": "string",
"display": true,
"required": false,
"displayName": "Location",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "LinkedIn",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "LinkedIn",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Company Name",
"type": "string",
"display": true,
"required": false,
"displayName": "Company Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Profile Data",
"type": "string",
"display": true,
"required": false,
"displayName": "Profile Data",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Subject",
"type": "string",
"display": true,
"required": false,
"displayName": "Subject",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Email Body",
"type": "string",
"display": true,
"required": false,
"displayName": "Email Body",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "defineBelow",
"matchingColumns": [
"LinkedIn"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": 1023079571,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1nIGlVREvoz7iyCsOmCgqRXgKFFQZIVckV6a1KnDGpjM/edit#gid=1023079571",
"cachedResultName": "Sheet10"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "1nIGlVREvoz7iyCsOmCgqRXgKFFQZIVckV6a1KnDGpjM",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/1nIGlVREvoz7iyCsOmCgqRXgKFFQZIVckV6a1KnDGpjM/edit?usp=drivesdk",
"cachedResultName": "MLOps CXOs Bay Area"
}
},
"typeVersion": 4.7
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "2d96068c-2cd4-48c7-adb3-f5139666adc1",
"connections": {
"efe97c07-f2d4-4f90-9f21-a503ebbd4103": {
"main": [
[
{
"node": "77f3dbf8-9218-44cf-a03f-feacfa4a1906",
"type": "main",
"index": 0
}
]
]
},
"6e9c4aac-17fc-4b21-a832-038b6571a52e": {
"main": [
[
{
"node": "ecbfc577-7f4d-448c-8c70-4c6a80ba7629",
"type": "main",
"index": 0
}
]
]
},
"4f2e62e8-7e5e-434b-80f7-c2197ad1950c": {
"main": [
[
{
"node": "b8bdd09a-1e75-4a13-9fee-75ffc305fa67",
"type": "main",
"index": 0
}
]
]
},
"ecbfc577-7f4d-448c-8c70-4c6a80ba7629": {
"main": [
[
{
"node": "6bcd2902-cf7c-4235-ad92-d8ea28392af4",
"type": "main",
"index": 0
}
]
]
},
"0d58b6ca-bd4d-442b-958a-6e54c8fcb9b0": {
"main": [
[
{
"node": "02725c27-8264-4b8d-a725-18947a0c8b6b",
"type": "main",
"index": 0
}
]
]
},
"d1412a37-4f94-4efa-aac8-ba7f129b2bb7": {
"ai_languageModel": [
[
{
"node": "f81e7880-4ae7-4f32-864a-05bb176a9e58",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"0ca835dc-bc3f-49bf-85d8-08a8d41d3502": {
"ai_outputParser": [
[
{
"node": "f81e7880-4ae7-4f32-864a-05bb176a9e58",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"6bcd2902-cf7c-4235-ad92-d8ea28392af4": {
"main": [
[
{
"node": "efe97c07-f2d4-4f90-9f21-a503ebbd4103",
"type": "main",
"index": 0
}
]
]
},
"b8bdd09a-1e75-4a13-9fee-75ffc305fa67": {
"main": [
[
{
"node": "0d58b6ca-bd4d-442b-958a-6e54c8fcb9b0",
"type": "main",
"index": 0
}
]
]
},
"77f3dbf8-9218-44cf-a03f-feacfa4a1906": {
"main": [
[
{
"node": "4f2e62e8-7e5e-434b-80f7-c2197ad1950c",
"type": "main",
"index": 0
}
]
]
},
"f81e7880-4ae7-4f32-864a-05bb176a9e58": {
"main": [
[
{
"node": "556499f4-f086-45bf-aad7-90e78c4dfc5b",
"type": "main",
"index": 0
}
]
]
},
"02725c27-8264-4b8d-a725-18947a0c8b6b": {
"main": [
[
{
"node": "f81e7880-4ae7-4f32-864a-05bb176a9e58",
"type": "main",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Avancé - Génération de leads, IA Multimodale
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Intuz
@intuzWorkflow automation can help automate your routine activities and help saves $$$, as well as hours of time. As a boutique tech consulting company, Intuz help businesses with custom AI/ML, AI Workflow Automations, and software development. Automate your business workflow for: Sales Marketing Accounting Finance Operations E-Commerce Customer Support Admin & Backoffice Logistics & Supply Chain
Partager ce workflow