Routage automatisé d'IA avec OpenRouter

Intermédiaire

Ceci est unEngineering, Building Blocks, AI, IT Opsworkflow d'automatisation du domainecontenant 7 nœuds.Utilise principalement des nœuds comme Agent, ChatTrigger, LmChatOpenRouter, OutputParserStructured, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Routage dynamique de modèle AI pour l'optimisation des requêtes via OpenRouter

Prérequis
  • Clé API de service IA (comme OpenAI, Anthropic, etc.)
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "id": "uNLWQ7BSozpoehpU",
  "meta": {
    "instanceId": "a4bfc93e975ca233ac45ed7c9227d84cf5a2329310525917adaf3312e10d5462",
    "templateCredsSetupCompleted": true
  },
  "name": "Automated AI Routing with OpenRouter",
  "tags": [],
  "nodes": [
    {
      "id": "25903a04-24d2-41f9-bf34-5d6234e642e5",
      "name": "À la réception d'un message de chat",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -180,
        -180
      ],
      "webhookId": "a0032740-26d8-491b-93f9-2250906d0e17",
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "fabffdee-3c1e-47db-a4e9-f6473a6e9257",
      "name": "Modèle de Chat OpenRouter",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
      "position": [
        0,
        40
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openRouterApi": {
          "id": "pb06rfB4xmxzVe3Q",
          "name": "OpenRouter"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c53fe672-92cb-4d88-b4f6-f413fb00ad6a",
      "name": "Analyseur de Sortie Structurée",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        220,
        40
      ],
      "parameters": {
        "schemaType": "manual",
        "inputSchema": "{\n\t\"type\": \"object\",\n\t\"properties\": {\n\t\t\"prompt\": {\n\t\t\t\"type\": \"string\"\n\t\t},\n\t\t\"model\": {\n\t\t\t\"type\": \"string\"\n\t\t}\n\t}\n}"
      },
      "typeVersion": 1.2
    },
    {
      "id": "d60a9d61-c611-4813-bf85-e8f8faaa21b6",
      "name": "Modèle de Chat OpenRouter1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenRouter",
      "position": [
        380,
        40
      ],
      "parameters": {
        "model": "={{ $json.output.model }}",
        "options": {}
      },
      "credentials": {
        "openRouterApi": {
          "id": "pb06rfB4xmxzVe3Q",
          "name": "OpenRouter"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "ef9ceacb-55e4-4795-aa18-976997ec3717",
      "name": "Note Adhésive",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -180,
        -420
      ],
      "parameters": {
        "width": 840,
        "height": 180,
        "content": "## Dynamic Model Selector for Optimal AI Responses\n\nThe **Agent Decisioner** is a dynamic, AI-powered routing system that automatically selects the most appropriate large language model (LLM) to respond to a user's query based on the query’s content and purpose.\n\nThis workflow ensures **dynamic, optimized AI responses** by intelligently routing queries to the best-suited model."
      },
      "typeVersion": 1
    },
    {
      "id": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
      "name": "Agent de Routage",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        40,
        -180
      ],
      "parameters": {
        "options": {
          "systemMessage": "=You are a **Routing Agent**.\n\nYour task is to analyze user queries and determine the most appropriate model to handle each specific use case.\n\n## Available Models\n\nYou have access to the following models:\n\n1. **perplexity/sonar**\n2. **openai/gpt-4o-mini**\n3. **anthropic/claude-3.7-sonnet**\n4. **meta-llama/llama-3-70b-instruct**\n5. **google/gemini-2.5-pro-preview**\n6. **qwen/qwen-qwq-32b**\n7. **openai/codex-mini**\n8. **openai/o1-pro**\n\n## Model Strengths\n\n### 1. perplexity/sonar\n- Built-in web search capability\n- Provides citations and customizable sources\n- Ideal for retrieving live, up-to-date information from the web\n\n### 2. openai/gpt-4o-mini\n- Cost-efficient language model optimized for advanced reasoning tasks\n- Excels in science and mathematics\n- Best suited for problems requiring careful, well-thought-out responses involving multiple variables or connections\n\n### 3. anthropic/claude-3.7-sonnet\n- High proficiency in coding tasks, scoring ~94% on SWE-Bench Verified\n- Enhances data science expertise by navigating unstructured data and utilizing multiple tools for insights\n- Handles very long documents and maintains coherence over extended conversations or analyses\n- Performs well in creative writing tasks such as storytelling, dialogue generation, and summarization\n- Tends to produce responses that are more aligned with safety and ethical guidelines\n\n### 4. meta-llama/llama-3-70b-instruct\n- Strong performance in coding and reasoning tasks\n- Suitable for complex programming and technical problem-solving\n- Supports long context windows, making it ideal for extended analyses\n\n### 5. google/gemini-2.5-pro-preview\n- Advanced multimodal capabilities, handling both text and images\n- Excels in tasks requiring integration of visual and textual information\n- Ideal for complex problem-solving involving diverse data types\n\n### 6. qwen/qwen-qwq-32b\n- Specialized in reasoning and problem-solving tasks\n- Effective in handling logical puzzles and complex analytical queries\n\n### 7. openai/codex-mini\n- Optimized for code generation and completion tasks\n- Suitable for lightweight coding tasks and quick code snippets\n\n### 8. openai/o1-pro\n- Designed for complex reasoning with enhanced computational resources\n- Performs well in STEM-related tasks, including physics, chemistry, and biology\n- Capable of handling large context windows, making it suitable for in-depth analyses\n\n## Output Format\n\nYour output must always be a valid JSON object in the following format:\n\n```json\n{\n  \"prompt\": \"user query goes here\",\n  \"model\": \"selected-model-name\"\n}\n```\n\n- The **\"prompt\"** field should contain the exact query to be sent to the selected model.\n- The **\"model\"** field should contain the model name (one of: perplexity/sonar, openai/gpt-4o-mini, anthropic/claude-3.7-sonnet, meta-llama/llama-3-70b-instruct, google/gemini-2.5-pro-preview, qwen/qwen-qwq-32b, openai/codex-mini, openai/o1-pro).\n\n**Important:** Only return the JSON object. Do not include any explanations or additional text."
        },
        "hasOutputParser": true
      },
      "typeVersion": 1.9
    },
    {
      "id": "94c49c22-9697-4230-ba35-5159041cfdc7",
      "name": "Agent d'IA",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        400,
        -180
      ],
      "parameters": {
        "text": "={{ $json.output.prompt }}",
        "options": {},
        "promptType": "define"
      },
      "typeVersion": 1.9
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "f1562281-3e44-4f7d-a585-90c54a65e888",
  "connections": {
    "4d688ad7-b463-4e72-9b79-4b9142f022d2": {
      "main": [
        [
          {
            "node": "94c49c22-9697-4230-ba35-5159041cfdc7",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "fabffdee-3c1e-47db-a4e9-f6473a6e9257": {
      "ai_languageModel": [
        [
          {
            "node": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "d60a9d61-c611-4813-bf85-e8f8faaa21b6": {
      "ai_languageModel": [
        [
          {
            "node": "94c49c22-9697-4230-ba35-5159041cfdc7",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "c53fe672-92cb-4d88-b4f6-f413fb00ad6a": {
      "ai_outputParser": [
        [
          {
            "node": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "25903a04-24d2-41f9-bf34-5d6234e642e5": {
      "main": [
        [
          {
            "node": "4d688ad7-b463-4e72-9b79-4b9142f022d2",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Intermédiaire - Ingénierie, Blocs de construction, Intelligence Artificielle, Opérations IT

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Informations sur le workflow
Niveau de difficulté
Intermédiaire
Nombre de nœuds7
Catégorie4
Types de nœuds5
Description de la difficulté

Adapté aux utilisateurs expérimentés, avec des workflows de complexité moyenne contenant 6-15 nœuds

Auteur

Full-stack Web Developer based in Italy specialising in Marketing & AI-powered automations. For business enquiries, send me an email at info@n3w.it or add me on Linkedin.com/in/davideboizza

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34