Créer un système de questions-réponses pour les articles de Paul Graham avec OpenAI et la base de données vectorielle Milvus
Ceci est unAIworkflow d'automatisation du domainecontenant 22 nœuds.Utilise principalement des nœuds comme Html, Limit, SplitOut, HttpRequest, ManualTrigger, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Utiliser OpenAI et la base de données vectorielle Milvus pour créer un système de question-réponse sur les articles de Paul Graham
- •Peut nécessiter les informations d'identification d'authentification de l'API cible
- •Clé API OpenAI
Nœuds utilisés (22)
Catégorie
{
"meta": {
"instanceId": "89c9c2dbc29ad74e9e02caaf3e27ce718c567278274962e355a9a9679d5f3af7"
},
"nodes": [
{
"id": "33e94ee1-4244-4075-bb4b-93a99a2cacd9",
"name": "OpenAI Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
20,
560
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": {}
},
"typeVersion": 1.2
},
{
"id": "dd97266d-a039-4d8f-bc7d-fb439ad5a6d7",
"name": "Lors du clic sur \"Exécuter le workflow\"",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-180,
0
],
"parameters": {},
"typeVersion": 1
},
{
"id": "c4d4a979-3182-46c9-b145-fa4e6ba57011",
"name": "Récupérer la liste des essais",
"type": "n8n-nodes-base.httpRequest",
"position": [
80,
0
],
"parameters": {
"url": "http://www.paulgraham.com/articles.html",
"options": {}
},
"typeVersion": 4.2
},
{
"id": "2e2913f9-d01a-41e8-b1b8-9a981910db7b",
"name": "Extraire les noms des essais",
"type": "n8n-nodes-base.html",
"position": [
280,
0
],
"parameters": {
"options": {},
"operation": "extractHtmlContent",
"extractionValues": {
"values": [
{
"key": "essay",
"attribute": "href",
"cssSelector": "table table a",
"returnArray": true,
"returnValue": "attribute"
}
]
}
},
"typeVersion": 1.2
},
{
"id": "c121dc65-37e3-49d4-b449-f28491e19a6f",
"name": "Séparer en éléments individuels",
"type": "n8n-nodes-base.splitOut",
"position": [
480,
0
],
"parameters": {
"options": {},
"fieldToSplitOut": "essay"
},
"typeVersion": 1
},
{
"id": "5644c48d-62b6-4e2d-ad25-013b55f5ec71",
"name": "Récupérer les textes des essais",
"type": "n8n-nodes-base.httpRequest",
"position": [
880,
0
],
"parameters": {
"url": "=http://www.paulgraham.com/{{ $json.essay }}",
"options": {}
},
"typeVersion": 4.2
},
{
"id": "cd84596e-4046-4d33-9f43-cf464e5c5c01",
"name": "Limiter aux 3 premiers",
"type": "n8n-nodes-base.limit",
"position": [
680,
0
],
"parameters": {
"maxItems": 3
},
"typeVersion": 1
},
{
"id": "318aeeed-fcce-4de2-aa04-92033ef01f28",
"name": "Extraire le texte uniquement",
"type": "n8n-nodes-base.html",
"position": [
1200,
0
],
"parameters": {
"options": {},
"operation": "extractHtmlContent",
"extractionValues": {
"values": [
{
"key": "data",
"cssSelector": "body",
"skipSelectors": "img,nav"
}
]
}
},
"typeVersion": 1.2
},
{
"id": "0668851e-a31f-4e6e-8966-4544092e318e",
"name": "Note adhésive3",
"type": "n8n-nodes-base.stickyNote",
"position": [
0,
-120
],
"parameters": {
"width": 1071.752021563343,
"height": 285.66037735849045,
"content": "## Scrape latest Paul Graham essays"
},
"typeVersion": 1
},
{
"id": "cf9af24c-9e08-4f27-ad4e-509f72e54a9b",
"name": "Note adhésive5",
"type": "n8n-nodes-base.stickyNote",
"position": [
1120,
-120
],
"parameters": {
"width": 625,
"height": 607,
"content": "## Load into Milvus vector store"
},
"typeVersion": 1
},
{
"id": "95e9a59d-1832-4eb7-b58d-ba391c1acb1c",
"name": "À la réception d'un message chat",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-200,
380
],
"webhookId": "cd2703a7-f912-46fe-8787-3fb83ea116ab",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "0076ea3d-e667-4df2-83c3-9de0d3de0498",
"name": "Note adhésive",
"type": "n8n-nodes-base.stickyNote",
"position": [
-380,
-160
],
"parameters": {
"width": 280,
"height": 180,
"content": "## Step 1\n1. Set up a Milvus server based on [this guide](https://milvus.io/docs/install_standalone-docker-compose.md). And then create a collection named `my_collection`.\n2. Click this workflow to load scrape and load Paul Graham essays to Milvus collection.\n"
},
"typeVersion": 1
},
{
"id": "e90a069e-cfd8-49f1-8fe6-a334bb920027",
"name": "Milvus Vector Store",
"type": "@n8n/n8n-nodes-langchain.vectorStoreMilvus",
"position": [
1420,
0
],
"parameters": {
"mode": "insert",
"options": {
"clearCollection": true
},
"milvusCollection": {
"__rl": true,
"mode": "list",
"value": "my_collection",
"cachedResultName": "my_collection"
}
},
"typeVersion": 1.1
},
{
"id": "d786c471-d564-4f25-beab-f1c7f4559f7a",
"name": "Default Data Loader",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
1460,
220
],
"parameters": {
"options": {},
"jsonData": "={{ $('Extract Text Only').item.json.data }}",
"jsonMode": "expressionData"
},
"typeVersion": 1
},
{
"id": "26730b7b-2bb9-46f8-83c3-3d4ffdfdef57",
"name": "Embeddings OpenAI",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
1320,
240
],
"parameters": {
"options": {}
},
"typeVersion": 1.2
},
{
"id": "de836110-4073-44d5-bbf3-d57f57525f69",
"name": "Recursive Character Text Splitter",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
1540,
340
],
"parameters": {
"options": {},
"chunkSize": 6000
},
"typeVersion": 1
},
{
"id": "ddaa936e-416a-40e4-adf6-cf7ebfb8b094",
"name": "Note adhésive1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-380,
280
],
"parameters": {
"width": 280,
"height": 120,
"content": "## Step 2\nChat with this QA Chain with Milvus retriever\n"
},
"typeVersion": 1
},
{
"id": "f5b7410f-37c7-40ff-b841-12ed04252317",
"name": "Embeddings OpenAI1",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
80,
860
],
"parameters": {
"options": {}
},
"typeVersion": 1.2
},
{
"id": "7a5d1b3f-9b2c-4943-9b40-2a213e30159c",
"name": "Milvus Vector Store1",
"type": "@n8n/n8n-nodes-langchain.vectorStoreMilvus",
"position": [
120,
720
],
"parameters": {
"milvusCollection": {
"__rl": true,
"mode": "list",
"value": "my_collection",
"cachedResultName": "my_collection"
}
},
"typeVersion": 1.1
},
{
"id": "2402387f-e147-4239-9128-34af296e0012",
"name": "Note adhésive2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-20,
360
],
"parameters": {
"color": 7,
"width": 574,
"height": 629,
"content": ""
},
"typeVersion": 1
},
{
"id": "3665ef25-e464-496a-84d6-980b96e78e9a",
"name": "Chaîne Q&R pour récupérer depuis Milvus et répondre aux questions",
"type": "@n8n/n8n-nodes-langchain.chainRetrievalQa",
"position": [
120,
380
],
"parameters": {
"options": {}
},
"typeVersion": 1.5
},
{
"id": "10bf4a2c-ee2b-4185-b1e5-29b8664078fb",
"name": "Milvus Vector Store Retriever",
"type": "@n8n/n8n-nodes-langchain.retrieverVectorStore",
"position": [
260,
580
],
"parameters": {},
"typeVersion": 1
}
],
"pinData": {},
"connections": {
"c4d4a979-3182-46c9-b145-fa4e6ba57011": {
"main": [
[
{
"node": "2e2913f9-d01a-41e8-b1b8-9a981910db7b",
"type": "main",
"index": 0
}
]
]
},
"cd84596e-4046-4d33-9f43-cf464e5c5c01": {
"main": [
[
{
"node": "5644c48d-62b6-4e2d-ad25-013b55f5ec71",
"type": "main",
"index": 0
}
]
]
},
"26730b7b-2bb9-46f8-83c3-3d4ffdfdef57": {
"ai_embedding": [
[
{
"node": "e90a069e-cfd8-49f1-8fe6-a334bb920027",
"type": "ai_embedding",
"index": 0
}
]
]
},
"318aeeed-fcce-4de2-aa04-92033ef01f28": {
"main": [
[
{
"node": "e90a069e-cfd8-49f1-8fe6-a334bb920027",
"type": "main",
"index": 0
}
]
]
},
"5644c48d-62b6-4e2d-ad25-013b55f5ec71": {
"main": [
[
{
"node": "318aeeed-fcce-4de2-aa04-92033ef01f28",
"type": "main",
"index": 0
}
]
]
},
"33e94ee1-4244-4075-bb4b-93a99a2cacd9": {
"ai_languageModel": [
[
{
"node": "3665ef25-e464-496a-84d6-980b96e78e9a",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"f5b7410f-37c7-40ff-b841-12ed04252317": {
"ai_embedding": [
[
{
"node": "7a5d1b3f-9b2c-4943-9b40-2a213e30159c",
"type": "ai_embedding",
"index": 0
}
]
]
},
"d786c471-d564-4f25-beab-f1c7f4559f7a": {
"ai_document": [
[
{
"node": "e90a069e-cfd8-49f1-8fe6-a334bb920027",
"type": "ai_document",
"index": 0
}
]
]
},
"2e2913f9-d01a-41e8-b1b8-9a981910db7b": {
"main": [
[
{
"node": "c121dc65-37e3-49d4-b449-f28491e19a6f",
"type": "main",
"index": 0
}
]
]
},
"7a5d1b3f-9b2c-4943-9b40-2a213e30159c": {
"ai_vectorStore": [
[
{
"node": "10bf4a2c-ee2b-4185-b1e5-29b8664078fb",
"type": "ai_vectorStore",
"index": 0
}
]
]
},
"c121dc65-37e3-49d4-b449-f28491e19a6f": {
"main": [
[
{
"node": "cd84596e-4046-4d33-9f43-cf464e5c5c01",
"type": "main",
"index": 0
}
]
]
},
"95e9a59d-1832-4eb7-b58d-ba391c1acb1c": {
"main": [
[
{
"node": "3665ef25-e464-496a-84d6-980b96e78e9a",
"type": "main",
"index": 0
}
]
]
},
"10bf4a2c-ee2b-4185-b1e5-29b8664078fb": {
"ai_retriever": [
[
{
"node": "3665ef25-e464-496a-84d6-980b96e78e9a",
"type": "ai_retriever",
"index": 0
}
]
]
},
"dd97266d-a039-4d8f-bc7d-fb439ad5a6d7": {
"main": [
[
{
"node": "c4d4a979-3182-46c9-b145-fa4e6ba57011",
"type": "main",
"index": 0
}
]
]
},
"de836110-4073-44d5-bbf3-d57f57525f69": {
"ai_textSplitter": [
[
{
"node": "d786c471-d564-4f25-beab-f1c7f4559f7a",
"type": "ai_textSplitter",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Avancé - Intelligence Artificielle
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Cheney Zhang
@zc277584121Algorithm engineer at Zilliz, dedicating to the application of vector databases in the AI ecosystem.
Partager ce workflow