[3/3] Outil de détection d'anomalies (jeu de données agricoles)
Ceci est unAI, SecOpsworkflow d'automatisation du domainecontenant 17 nœuds.Utilise principalement des nœuds comme Set, Code, HttpRequest, ExecuteWorkflowTrigger, combinant la technologie d'intelligence artificielle pour une automatisation intelligente. Outil de détection d'anomalies (images) [3/3 - Anomalie]
- •Peut nécessiter les informations d'identification d'authentification de l'API cible
Nœuds utilisés (17)
{
"id": "G8jRDBvwsMkkMiLN",
"meta": {
"instanceId": "205b3bc06c96f2dc835b4f00e1cbf9a937a74eeb3b47c99d0c30b0586dbf85aa"
},
"name": "[3/3] Anomaly detection tool (crops dataset)",
"tags": [
{
"id": "spMntyrlE9ydvWFA",
"name": "anomaly-detection",
"createdAt": "2024-12-08T22:05:15.945Z",
"updatedAt": "2024-12-09T12:50:19.287Z"
}
],
"nodes": [
{
"id": "e01bafec-eb24-44c7-b3c4-a60f91666350",
"name": "Note adhésive1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1200,
180
],
"parameters": {
"color": 6,
"width": 400,
"height": 740,
"content": "We are working here with crops dataset: \nExisting (so not anomalies) crops images in dataset are:\n- 'pearl_millet(bajra)',\n- 'tobacco-plant',\n- 'cherry',\n- 'cotton',\n- 'banana',\n- 'cucumber',\n- 'maize',\n- 'wheat',\n- 'clove',\n- 'jowar',\n- 'olive-tree',\n- 'soyabean',\n- 'coffee-plant',\n- 'rice',\n- 'lemon',\n- 'mustard-oil',\n- 'vigna-radiati(mung)',\n- 'coconut',\n- 'gram',\n- 'pineapple',\n- 'sugarcane',\n- 'sunflower',\n- 'chilli',\n- 'fox_nut(makhana)',\n- 'jute',\n- 'papaya',\n- 'tea',\n- 'cardamom',\n- 'almond'\n"
},
"typeVersion": 1
},
{
"id": "b9943781-de1f-4129-9b81-ed836e9ebb11",
"name": "Embed image",
"type": "n8n-nodes-base.httpRequest",
"position": [
680,
60
],
"parameters": {
"url": "https://api.voyageai.com/v1/multimodalembeddings",
"method": "POST",
"options": {},
"jsonBody": "={{\n{\n \"inputs\": [\n {\n \"content\": [\n {\n \"type\": \"image_url\",\n \"image_url\": $('Image URL hardcode').first().json.imageURL\n }\n ]\n }\n ],\n \"model\": \"voyage-multimodal-3\",\n \"input_type\": \"document\"\n}\n}}",
"sendBody": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth"
},
"credentials": {
"httpHeaderAuth": {
"id": "Vb0RNVDnIHmgnZOP",
"name": "Voyage API"
}
},
"typeVersion": 4.2
},
{
"id": "47b72bc2-4817-48c6-b517-c1328e402468",
"name": "Get similarity of medoids",
"type": "n8n-nodes-base.httpRequest",
"position": [
940,
60
],
"parameters": {
"url": "={{ $('Variables for medoids').first().json.qdrantCloudURL }}/collections/{{ $('Variables for medoids').first().json.collectionName }}/points/query",
"method": "POST",
"options": {},
"jsonBody": "={{\n{\n \"query\": $json.data[0].embedding,\n \"using\": \"voyage\",\n \"limit\": $('Info About Crop Labeled Clusters').first().json.cropsNumber,\n \"with_payload\": true,\n \"filter\": {\n \"must\": [\n { \n \"key\": $('Variables for medoids').first().json.clusterCenterType,\n \"match\": {\n \"value\": true\n }\n }\n ]\n }\n}\n}}",
"sendBody": true,
"specifyBody": "json",
"authentication": "predefinedCredentialType",
"nodeCredentialType": "qdrantApi"
},
"credentials": {
"qdrantApi": {
"id": "it3j3hP9FICqhgX6",
"name": "QdrantApi account"
}
},
"typeVersion": 4.2
},
{
"id": "42d7eb27-ec38-4406-b5c4-27eb45358e93",
"name": "Compare scores",
"type": "n8n-nodes-base.code",
"position": [
1140,
60
],
"parameters": {
"language": "python",
"pythonCode": "points = _input.first()['json']['result']['points']\nthreshold_type = _('Variables for medoids').first()['json']['clusterThresholdCenterType']\n\nmax_score = -1\ncrop_with_max_score = None\nundefined = True\n\nfor center in points:\n if center['score'] >= center['payload'][threshold_type]:\n undefined = False\n if center['score'] > max_score:\n max_score = center['score']\n crop_with_max_score = center['payload']['crop_name']\n\nif undefined:\n result_message = \"ALERT, we might have a new undefined crop!\"\nelse:\n result_message = f\"Looks similar to {crop_with_max_score}\"\n\nreturn [{\n \"json\": {\n \"result\": result_message\n }\n}]\n"
},
"typeVersion": 2
},
{
"id": "23aa604a-ff0b-4948-bcd5-af39300198c0",
"name": "Note adhésive4",
"type": "n8n-nodes-base.stickyNote",
"position": [
-1200,
-220
],
"parameters": {
"width": 400,
"height": 380,
"content": "## Crop Anomaly Detection Tool\n### This is the tool that can be used directly for anomalous crops detection. \nIt takes as input (any) **image URL** and returns a **text message** telling if whatever this image depicts is anomalous to the crop dataset stored in Qdrant. \n\n* An Image URL is received via the Execute Workflow Trigger which is used to generate embedding vectors via the Voyage.ai Embeddings API.\n* The returned vectors are used to query the Qdrant collection to determine if the given crop is known by comparing it to **threshold scores** of each image class (crop type).\n* If the image scores lower than all thresholds, then the image is considered an anomaly for the dataset."
},
"typeVersion": 1
},
{
"id": "3a79eca2-44f9-4aee-8a0d-9c7ca2f9149d",
"name": "Variables for medoids",
"type": "n8n-nodes-base.set",
"position": [
-200,
60
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "dbbc1e7b-c63e-4ff1-9524-8ef3e9f6cd48",
"name": "clusterCenterType",
"type": "string",
"value": "is_medoid"
},
{
"id": "a994ce37-2530-4030-acfb-ec777a7ddb05",
"name": "qdrantCloudURL",
"type": "string",
"value": "https://152bc6e2-832a-415c-a1aa-fb529f8baf8d.eu-central-1-0.aws.cloud.qdrant.io"
},
{
"id": "12f0a9e6-686d-416e-a61b-72d034ec21ba",
"name": "collectionName",
"type": "string",
"value": "=agricultural-crops"
},
{
"id": "4c88a617-d44f-4776-b457-8a1dffb1d03c",
"name": "clusterThresholdCenterType",
"type": "string",
"value": "is_medoid_cluster_threshold"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "13b25434-bd66-4293-93f1-26c67b9ec7dd",
"name": "Note adhésive3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-340,
260
],
"parameters": {
"color": 6,
"width": 360,
"height": 200,
"content": "**clusterCenterType** - either\n* \"is_text_anchor_medoid\" or\n* \"is_medoid\"\n\n\n**clusterThresholdCenterType** - either\n* \"is_text_anchor_medoid_cluster_threshold\" or\n* \"is_medoid_cluster_threshold\""
},
"typeVersion": 1
},
{
"id": "869b0962-6cae-487d-8230-539a0cc4c14c",
"name": "Info About Crop Labeled Clusters",
"type": "n8n-nodes-base.set",
"position": [
440,
60
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "5327b254-b703-4a34-a398-f82edb1d6d6b",
"name": "=cropsNumber",
"type": "number",
"value": "={{ $json.result.hits.length }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "5d3956f8-f43b-439e-b176-a594a21d8011",
"name": "Total Points in Collection",
"type": "n8n-nodes-base.httpRequest",
"position": [
40,
60
],
"parameters": {
"url": "={{ $json.qdrantCloudURL }}/collections/{{ $json.collectionName }}/points/count",
"method": "POST",
"options": {},
"jsonBody": "={\n \"exact\": true\n}",
"sendBody": true,
"specifyBody": "json",
"authentication": "predefinedCredentialType",
"nodeCredentialType": "qdrantApi"
},
"credentials": {
"qdrantApi": {
"id": "it3j3hP9FICqhgX6",
"name": "QdrantApi account"
}
},
"typeVersion": 4.2
},
{
"id": "14ba3db9-3965-4b20-b333-145616d45c3a",
"name": "Each Crop Counts",
"type": "n8n-nodes-base.httpRequest",
"position": [
240,
60
],
"parameters": {
"url": "={{ $('Variables for medoids').first().json.qdrantCloudURL }}/collections/{{ $('Variables for medoids').first().json.collectionName }}/facet",
"method": "POST",
"options": {},
"jsonBody": "={{\n{\n \"key\": \"crop_name\",\n \"limit\": $json.result.count,\n \"exact\": true\n}\n}}",
"sendBody": true,
"specifyBody": "json",
"authentication": "predefinedCredentialType",
"nodeCredentialType": "qdrantApi"
},
"credentials": {
"qdrantApi": {
"id": "it3j3hP9FICqhgX6",
"name": "QdrantApi account"
}
},
"typeVersion": 4.2
},
{
"id": "e37c6758-0556-4a56-ab14-d4df663cb53a",
"name": "Image URL hardcode",
"type": "n8n-nodes-base.set",
"position": [
-480,
60
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "46ceba40-fb25-450c-8550-d43d8b8aa94c",
"name": "imageURL",
"type": "string",
"value": "={{ $json.query.imageURL }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "b24ad1a7-0cf8-4acc-9c18-6fe9d58b10f2",
"name": "Déclencheur d'exécution",
"type": "n8n-nodes-base.executeWorkflowTrigger",
"position": [
-720,
60
],
"parameters": {},
"typeVersion": 1
},
{
"id": "50424f2b-6831-41bf-8de4-81f69d901ce1",
"name": "Note adhésive2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-240,
-80
],
"parameters": {
"width": 180,
"height": 120,
"content": "Variables to access Qdrant's collection we uploaded & prepared for anomaly detection in 2 previous pipelines\n"
},
"typeVersion": 1
},
{
"id": "2e8ed3ca-1bba-4214-b34b-376a237842ff",
"name": "Note adhésive5",
"type": "n8n-nodes-base.stickyNote",
"position": [
40,
-120
],
"parameters": {
"width": 560,
"height": 140,
"content": "These three nodes are needed just to figure out how many different classes (crops) we have in our Qdrant collection: **cropsNumber** (needed in *\"Get similarity of medoids\"* node. \n[Note] *\"Total Points in Collection\"* -> *\"Each Crop Counts\"* were used&explained already in *\"[2/4] Set up medoids (2 types) for anomaly detection (crops dataset)\"* pipeline.\n"
},
"typeVersion": 1
},
{
"id": "e2fa5763-6e97-4ff5-8919-1cb85a3c6968",
"name": "Note adhésive6",
"type": "n8n-nodes-base.stickyNote",
"position": [
620,
240
],
"parameters": {
"height": 120,
"content": "Here, we're embedding the image passed to this workflow tool with the Voyage embedding model to compare the image to all crop images in the database."
},
"typeVersion": 1
},
{
"id": "cdb6b8d3-f7f4-4d66-850f-ce16c8ed98b9",
"name": "Note adhésive7",
"type": "n8n-nodes-base.stickyNote",
"position": [
920,
220
],
"parameters": {
"width": 400,
"height": 180,
"content": "Checking how similar the image is to all the centres of clusters (crops).\nIf it's more similar to the thresholds we set up and stored in centres in the previous workflow, the image probably belongs to this crop class; otherwise, it's anomalous to the class. \nIf image is anomalous to all the classes, it's an anomaly."
},
"typeVersion": 1
},
{
"id": "03b4699f-ba43-4f5f-ad69-6f81deea2641",
"name": "Note adhésive22",
"type": "n8n-nodes-base.stickyNote",
"position": [
-620,
580
],
"parameters": {
"color": 4,
"width": 540,
"height": 300,
"content": "### For anomaly detection\n1. The first pipeline is uploading (crops) dataset to Qdrant's collection.\n2. The second pipeline sets up cluster (class) centres in this Qdrant collection & cluster (class) threshold scores.\n3. **This is the anomaly detection tool, which takes any image as input and uses all preparatory work done with Qdrant (crops) collection.**\n\n### To recreate it\nYou'll have to upload [crops](https://www.kaggle.com/datasets/mdwaquarazam/agricultural-crops-image-classification) dataset from Kaggle to your own Google Storage bucket, and re-create APIs/connections to [Qdrant Cloud](https://qdrant.tech/documentation/quickstart-cloud/) (you can use **Free Tier** cluster), Voyage AI API & Google Cloud Storage\n\n**In general, pipelines are adaptable to any dataset of images**\n"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {
"Execute Workflow Trigger": [
{
"json": {
"query": {
"imageURL": "https://storage.googleapis.com/n8n-qdrant-demo/agricultural-crops%2Fcotton%2Fimage%20(36).jpg"
}
}
}
]
},
"settings": {
"executionOrder": "v1"
},
"versionId": "f67b764b-9e1a-4db0-b9f2-490077a62f74",
"connections": {
"b9943781-de1f-4129-9b81-ed836e9ebb11": {
"main": [
[
{
"node": "47b72bc2-4817-48c6-b517-c1328e402468",
"type": "main",
"index": 0
}
]
]
},
"14ba3db9-3965-4b20-b333-145616d45c3a": {
"main": [
[
{
"node": "869b0962-6cae-487d-8230-539a0cc4c14c",
"type": "main",
"index": 0
}
]
]
},
"e37c6758-0556-4a56-ab14-d4df663cb53a": {
"main": [
[
{
"node": "3a79eca2-44f9-4aee-8a0d-9c7ca2f9149d",
"type": "main",
"index": 0
}
]
]
},
"3a79eca2-44f9-4aee-8a0d-9c7ca2f9149d": {
"main": [
[
{
"node": "5d3956f8-f43b-439e-b176-a594a21d8011",
"type": "main",
"index": 0
}
]
]
},
"Execute Workflow Trigger": {
"main": [
[
{
"node": "e37c6758-0556-4a56-ab14-d4df663cb53a",
"type": "main",
"index": 0
}
]
]
},
"47b72bc2-4817-48c6-b517-c1328e402468": {
"main": [
[
{
"node": "42d7eb27-ec38-4406-b5c4-27eb45358e93",
"type": "main",
"index": 0
}
]
]
},
"5d3956f8-f43b-439e-b176-a594a21d8011": {
"main": [
[
{
"node": "14ba3db9-3965-4b20-b333-145616d45c3a",
"type": "main",
"index": 0
}
]
]
},
"869b0962-6cae-487d-8230-539a0cc4c14c": {
"main": [
[
{
"node": "b9943781-de1f-4129-9b81-ed836e9ebb11",
"type": "main",
"index": 0
}
]
]
}
}
}Comment utiliser ce workflow ?
Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.
Dans quelles scénarios ce workflow est-il adapté ?
Avancé - Intelligence Artificielle, Opérations de sécurité
Est-ce payant ?
Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.
Workflows recommandés
Partager ce workflow