Agent de renseignement concurrentiel : Surveillance SERP + Thordata + Résumé d'OpenAI

Avancé

Ceci est unMarket Research, AI Summarizationworkflow d'automatisation du domainecontenant 23 nœuds.Utilise principalement des nœuds comme Set, Merge, GoogleSheets, ManualTrigger, Agent. Agent de renseignement concurrentiel : Surveillance SERP + Thordata + Résumé d'insights OpenAI

Prérequis
  • Informations d'identification Google Sheets API
  • Peut nécessiter les informations d'identification d'authentification de l'API cible
  • Clé API OpenAI
Aperçu du workflow
Visualisation des connexions entre les nœuds, avec support du zoom et du déplacement
Exporter le workflow
Copiez la configuration JSON suivante dans n8n pour importer et utiliser ce workflow
{
  "id": "OQEOWynAfK54HxNr",
  "meta": {
    "instanceId": "885b4fb4a6a9c2cb5621429a7b972df0d05bb724c20ac7dac7171b62f1c7ef40",
    "templateCredsSetupCompleted": true
  },
  "name": "Competitor Intelligence Agent: SERP Monitoring + Summary Insights with Thordata + OpenAI",
  "tags": [
    {
      "id": "Kujft2FOjmOVQAmJ",
      "name": "Engineering",
      "createdAt": "2025-04-09T01:31:00.558Z",
      "updatedAt": "2025-04-09T01:31:00.558Z"
    },
    {
      "id": "ddPkw7Hg5dZhQu2w",
      "name": "AI",
      "createdAt": "2025-04-13T05:38:08.053Z",
      "updatedAt": "2025-04-13T05:38:08.053Z"
    },
    {
      "id": "qpxJxOMCv2x7Op5c",
      "name": "SERP",
      "createdAt": "2025-04-03T15:37:19.686Z",
      "updatedAt": "2025-04-03T15:37:19.686Z"
    }
  ],
  "nodes": [
    {
      "id": "d370dfd6-2a22-4e90-816f-be5e3b84c4c4",
      "name": "Agent IA",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        -304,
        -288
      ],
      "parameters": {
        "text": "={{ $json.search_query }}",
        "options": {},
        "promptType": "define"
      },
      "retryOnFail": true,
      "typeVersion": 2.2
    },
    {
      "id": "7af03b55-ba2e-4408-80ff-b81c02286993",
      "name": "Modèle de Chat OpenAI",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        -592,
        -64
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "vPKynKbDzJ5ZU4cU",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "51f08152-e6e0-428a-b914-77cf14e13283",
      "name": "Recherche Bing",
      "type": "n8n-nodes-base.httpRequestTool",
      "position": [
        -416,
        -64
      ],
      "parameters": {
        "url": "https://scraperapi.thordata.com/request",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "contentType": "form-urlencoded",
        "sendHeaders": true,
        "authentication": "predefinedCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "engine",
              "value": "bing"
            },
            {
              "name": "q",
              "value": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('parameters1_Value', ``, 'string') }}"
            },
            {
              "name": "json",
              "value": "1"
            }
          ]
        },
        "toolDescription": "HTTP request using Bing Search",
        "headerParameters": {
          "parameters": [
            {}
          ]
        },
        "nodeCredentialType": "httpBearerAuth"
      },
      "credentials": {
        "httpBearerAuth": {
          "id": "m17YVh2yJY7Fl9Wx",
          "name": "Thordata SERP Bearer YOUR_TOKEN_HERE Account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "ecdb2eb4-373b-4929-b3b6-14b9063d1e91",
      "name": "Recherche Google",
      "type": "n8n-nodes-base.httpRequestTool",
      "position": [
        -256,
        -64
      ],
      "parameters": {
        "url": "https://scraperapi.thordata.com/request",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "contentType": "form-urlencoded",
        "sendHeaders": true,
        "authentication": "predefinedCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "engine",
              "value": "google"
            },
            {
              "name": "q",
              "value": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('parameters1_Value', ``, 'string') }}"
            },
            {
              "name": "json",
              "value": "1"
            }
          ]
        },
        "toolDescription": "HTTP request using Google Search",
        "headerParameters": {
          "parameters": [
            {}
          ]
        },
        "nodeCredentialType": "httpBearerAuth"
      },
      "credentials": {
        "httpBearerAuth": {
          "id": "m17YVh2yJY7Fl9Wx",
          "name": "Thordata SERP Bearer YOUR_TOKEN_HERE Account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "ddfeffd8-9c9a-42c4-be8d-36f2dbacb99c",
      "name": "Recherche Yandex",
      "type": "n8n-nodes-base.httpRequestTool",
      "position": [
        -48,
        -64
      ],
      "parameters": {
        "url": "https://scraperapi.thordata.com/request",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "contentType": "form-urlencoded",
        "sendHeaders": true,
        "authentication": "predefinedCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "engine",
              "value": "yandex"
            },
            {
              "name": "q",
              "value": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('parameters1_Value', ``, 'string') }}"
            },
            {
              "name": "json",
              "value": "1"
            }
          ]
        },
        "toolDescription": "HTTP request using Yandex Search",
        "headerParameters": {
          "parameters": [
            {}
          ]
        },
        "nodeCredentialType": "httpBearerAuth"
      },
      "credentials": {
        "httpBearerAuth": {
          "id": "m17YVh2yJY7Fl9Wx",
          "name": "Thordata SERP Bearer YOUR_TOKEN_HERE Account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "8fdd3ba1-7f2f-4cb5-8be7-810be5048240",
      "name": "Recherche DuckDuckGo",
      "type": "n8n-nodes-base.httpRequestTool",
      "position": [
        144,
        -64
      ],
      "parameters": {
        "url": "https://scraperapi.thordata.com/request",
        "method": "POST",
        "options": {},
        "sendBody": true,
        "contentType": "form-urlencoded",
        "sendHeaders": true,
        "authentication": "predefinedCredentialType",
        "bodyParameters": {
          "parameters": [
            {
              "name": "engine",
              "value": "duckduckgo"
            },
            {
              "name": "q",
              "value": "={{ /*n8n-auto-generated-fromAI-override*/ $fromAI('parameters1_Value', ``, 'string') }}"
            },
            {
              "name": "json",
              "value": "1"
            }
          ]
        },
        "toolDescription": "HTTP request using DuckDuckGo Search",
        "headerParameters": {
          "parameters": [
            {}
          ]
        },
        "nodeCredentialType": "httpBearerAuth"
      },
      "credentials": {
        "httpBearerAuth": {
          "id": "m17YVh2yJY7Fl9Wx",
          "name": "Thordata SERP Bearer YOUR_TOKEN_HERE Account"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "d1a85744-8eb1-4a7a-9ac4-1dc11843c522",
      "name": "Note Adhésive 1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1088,
        -1136
      ],
      "parameters": {
        "color": 7,
        "width": 160,
        "content": "![Logo](https://consumersiteimages.trustpilot.net/business-units/67b212598525b99cf90a59cc-198x149-1x.jpg)"
      },
      "typeVersion": 1
    },
    {
      "id": "884c52b5-d8a2-4c67-b2a4-ca4ccacb7677",
      "name": "Lors du clic sur 'Exécuter le workflow'",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -1072,
        -288
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "6a142d04-f88e-436c-8a20-4f575de756b8",
      "name": "Définir les Champs de Saisie",
      "type": "n8n-nodes-base.set",
      "position": [
        -784,
        -288
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "4a779b05-0cb9-4d93-883c-90b8859edbca",
              "name": "search_query",
              "type": "string",
              "value": "Google Search for Top SEO strategies for e-commerce in 2025"
            }
          ]
        }
      },
      "typeVersion": 3.4
    },
    {
      "id": "8234accd-fa05-4795-96ef-99a158e673ff",
      "name": "Résumer le contenu",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        448,
        -464
      ],
      "parameters": {
        "text": "=Summarize the following content  {{ $json.output }}.\n\nOutput just the summary. Do not provide your own suggestions or recommendations",
        "batching": {},
        "promptType": "define",
        "hasOutputParser": true
      },
      "retryOnFail": true,
      "typeVersion": 1.7
    },
    {
      "id": "fe9c7ae5-70e8-4854-8c4d-f2dee9956024",
      "name": "Modèle de Chat OpenAI pour Résumé",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        432,
        -224
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "vPKynKbDzJ5ZU4cU",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "2438f8b8-02cf-4811-a65f-7c4601f252bc",
      "name": "Analyse des Mots-clés et Sujets",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        464,
        -32
      ],
      "parameters": {
        "text": "=Perform Keyword and Topic Analysis of the following  {{ $json.output }}",
        "options": {},
        "schemaType": "manual",
        "inputSchema": "{\n  \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n  \"title\": \"KeywordTopicAnalysis\",\n  \"type\": \"object\",\n  \"properties\": {\n    \"query\": {\n      \"type\": \"string\",\n      \"description\": \"The original search query or keyword used in the SERP analysis.\"\n    },\n    \"primary_keywords\": {\n      \"type\": \"array\",\n      \"description\": \"List of primary focus keywords extracted from the analyzed content or SERP data.\",\n      \"items\": { \"type\": \"string\" }\n    },\n    \"secondary_keywords\": {\n      \"type\": \"array\",\n      \"description\": \"Related or supporting keywords derived from semantic clustering or co-occurrence.\",\n      \"items\": { \"type\": \"string\" }\n    },\n    \"keyword_metrics\": {\n      \"type\": \"array\",\n      \"description\": \"SEO metrics for each keyword, including difficulty and search volume.\",\n      \"items\": {\n        \"type\": \"object\",\n        \"properties\": {\n          \"keyword\": { \"type\": \"string\" },\n          \"search_volume\": { \"type\": \"integer\" },\n          \"competition_score\": { \"type\": \"number\" },\n          \"difficulty_score\": { \"type\": \"number\" },\n          \"trend\": { \"type\": \"string\", \"enum\": [\"rising\", \"falling\", \"steady\"] }\n        },\n        \"required\": [\"keyword\"]\n      }\n    },\n    \"focus_topics\": {\n      \"type\": \"array\",\n      \"description\": \"List of main content themes or topics derived from the SERP results or web pages.\",\n      \"items\": { \"type\": \"string\" }\n    },\n    \"topic_clusters\": {\n      \"type\": \"array\",\n      \"description\": \"Groups of semantically related keywords and topics.\",\n      \"items\": {\n        \"type\": \"object\",\n        \"properties\": {\n          \"cluster_name\": { \"type\": \"string\" },\n          \"related_keywords\": { \"type\": \"array\", \"items\": { \"type\": \"string\" } },\n          \"search_intent\": {\n            \"type\": \"string\",\n            \"enum\": [\"informational\", \"navigational\", \"transactional\", \"commercial\"]\n          }\n        },\n        \"required\": [\"cluster_name\", \"related_keywords\"]\n      }\n    },\n    \"seo_strength_score\": {\n      \"type\": \"integer\",\n      \"description\": \"Overall SEO opportunity score (0–100).\"\n    },\n    \"content_gap_summary\": {\n      \"type\": \"string\",\n      \"description\": \"Summary describing missing topics or keyword opportunities in current content.\"\n    },\n    \"competitor_insights\": {\n      \"type\": \"array\",\n      \"description\": \"Optional data about competitors ranking for the analyzed keyword(s).\",\n      \"items\": {\n        \"type\": \"object\",\n        \"properties\": {\n          \"domain\": { \"type\": \"string\" },\n          \"ranking_position\": { \"type\": \"integer\" },\n          \"page_title\": { \"type\": \"string\" },\n          \"content_type\": { \"type\": \"string\" },\n          \"keyword_overlap\": { \"type\": \"number\" }\n        },\n        \"required\": [\"domain\", \"ranking_position\"]\n      }\n    },\n    \"ai_summary\": {\n      \"type\": \"string\",\n      \"description\": \"GPT-generated summary of the keyword and topic insights.\"\n    },\n    \"timestamp\": {\n      \"type\": \"string\",\n      \"format\": \"date-time\",\n      \"description\": \"Timestamp when the analysis was performed.\"\n    }\n  },\n  \"required\": [\"query\", \"primary_keywords\", \"focus_topics\", \"seo_strength_score\"]\n}\n"
      },
      "typeVersion": 1.2
    },
    {
      "id": "c4b13e07-1fa9-4d33-9140-14375f1e5c6b",
      "name": "Modèle de Chat OpenAI pour Analyse des Mots-clés et Sujets",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        464,
        144
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "vPKynKbDzJ5ZU4cU",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "27bcba40-fa09-4561-8a79-67af2e479e16",
      "name": "Analyste SEO",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        432,
        -960
      ],
      "parameters": {
        "text": "=Analyze the following SERP results for competitor insights and keyword opportunities:\\n\\n {{ $json.output }}",
        "options": {
          "systemPromptTemplate": "You are an SEO analyst. Extract primary keywords, competitor names, content tone, and summarize SEO strength from SERP data. "
        },
        "schemaType": "manual",
        "inputSchema": "{\n  \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n  \"title\": \"CompetitorInsightsAndKeywordOpportunities\",\n  \"type\": \"object\",\n  \"description\": \"Structured output for analyzing SERP results to extract competitor insights, keyword opportunities, and SEO metrics.\",\n  \"properties\": {\n    \"query\": {\n      \"type\": \"string\",\n      \"description\": \"The search query or topic analyzed in the SERP.\"\n    },\n    \"analyzed_date\": {\n      \"type\": \"string\",\n      \"format\": \"date-time\",\n      \"description\": \"Timestamp when the analysis was performed.\"\n    },\n    \"competitors\": {\n      \"type\": \"array\",\n      \"description\": \"List of main competitors or domains identified in the SERP results.\",\n      \"items\": {\n        \"type\": \"object\",\n        \"properties\": {\n          \"domain\": { \"type\": \"string\", \"description\": \"Competitor domain or brand name.\" },\n          \"page_title\": { \"type\": \"string\", \"description\": \"Title of the competitor’s ranking page.\" },\n          \"ranking_position\": { \"type\": \"integer\", \"description\": \"SERP position for this result.\" },\n          \"snippet\": { \"type\": \"string\", \"description\": \"Short description or meta snippet from the SERP.\" },\n          \"content_type\": {\n            \"type\": \"string\",\n            \"enum\": [\"blog\", \"product_page\", \"landing_page\", \"news\", \"other\"],\n            \"description\": \"Type of content represented by the competitor page.\"\n          },\n          \"estimated_traffic_share\": {\n            \"type\": \"number\",\n            \"minimum\": 0,\n            \"maximum\": 100,\n            \"description\": \"Estimated share of search traffic (%) for this result.\"\n          },\n          \"keyword_overlap\": {\n            \"type\": \"number\",\n            \"minimum\": 0,\n            \"maximum\": 1,\n            \"description\": \"Proportion of shared keywords with the target domain (0–1 scale).\"\n          },\n          \"strengths\": {\n            \"type\": \"array\",\n            \"items\": { \"type\": \"string\" },\n            \"description\": \"SEO strengths or advantages identified for this competitor.\"\n          },\n          \"weaknesses\": {\n            \"type\": \"array\",\n            \"items\": { \"type\": \"string\" },\n            \"description\": \"Content or optimization weaknesses detected.\"\n          }\n        },\n        \"required\": [\"domain\", \"ranking_position\"]\n      }\n    },\n    \"keyword_opportunities\": {\n      \"type\": \"array\",\n      \"description\": \"List of new or underutilized keywords identified from the SERP analysis.\",\n      \"items\": {\n        \"type\": \"object\",\n        \"properties\": {\n          \"keyword\": { \"type\": \"string\" },\n          \"search_volume\": { \"type\": \"integer\", \"description\": \"Estimated monthly search volume.\" },\n          \"competition_score\": { \"type\": \"number\", \"description\": \"Keyword competition (0–1 scale).\" },\n          \"difficulty_score\": { \"type\": \"number\", \"description\": \"Keyword difficulty (0–100 scale).\" },\n          \"intent\": {\n            \"type\": \"string\",\n            \"enum\": [\"informational\", \"navigational\", \"transactional\", \"commercial\"],\n            \"description\": \"User search intent.\"\n          },\n          \"relevance_score\": {\n            \"type\": \"number\",\n            \"minimum\": 0,\n            \"maximum\": 1,\n            \"description\": \"Relevance to the analyzed query (0–1 scale).\"\n          }\n        },\n        \"required\": [\"keyword\"]\n      }\n    },\n    \"topic_clusters\": {\n      \"type\": \"array\",\n      \"description\": \"Clusters of semantically related topics derived from the SERP.\",\n      \"items\": {\n        \"type\": \"object\",\n        \"properties\": {\n          \"cluster_name\": { \"type\": \"string\" },\n          \"related_keywords\": { \"type\": \"array\", \"items\": { \"type\": \"string\" } },\n          \"dominant_competitor\": { \"type\": \"string\", \"description\": \"Competitor leading in this topic cluster.\" }\n        },\n        \"required\": [\"cluster_name\", \"related_keywords\"]\n      }\n    },\n    \"content_gap_analysis\": {\n      \"type\": \"object\",\n      \"description\": \"Summary of missing or underrepresented topics in the current content compared to competitors.\",\n      \"properties\": {\n        \"gaps_identified\": { \"type\": \"array\", \"items\": { \"type\": \"string\" } },\n        \"recommendations\": { \"type\": \"array\", \"items\": { \"type\": \"string\" } }\n      }\n    },\n    \"seo_strength_score\": {\n      \"type\": \"integer\",\n      \"minimum\": 0,\n      \"maximum\": 100,\n      \"description\": \"Overall SEO opportunity score (0–100) based on keyword difficulty, gap size, and competitor weaknesses.\"\n    },\n    \"ai_summary\": {\n      \"type\": \"string\",\n      \"description\": \"GPT-generated executive summary of the key findings, keyword opportunities, and competitor insights.\"\n    }\n  },\n  \"required\": [\"query\", \"competitors\", \"keyword_opportunities\", \"seo_strength_score\", \"ai_summary\"]\n}\n"
      },
      "typeVersion": 1.2
    },
    {
      "id": "b5cac579-1031-488c-9caa-75af3c14250e",
      "name": "Modèle de Chat OpenAI pour Analyste SEO",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        432,
        -784
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "gpt-4.1-mini"
        },
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "vPKynKbDzJ5ZU4cU",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "ccae56d4-2d58-4b87-bc57-e24857716860",
      "name": "Analyseur de Sortie Structurée",
      "type": "@n8n/n8n-nodes-langchain.outputParserStructured",
      "position": [
        640,
        -224
      ],
      "parameters": {
        "schemaType": "manual",
        "inputSchema": "{\n\t\"type\": \"object\",\n\t\"properties\": {\"comprehensive_summary\": {\n\t\t\t\"type\": \"string\"\n\t\t},\n        \"abstract_summary\": {\n\t\t\t\"type\": \"string\"\n\t\t}\n    }\n}"
      },
      "typeVersion": 1.3
    },
    {
      "id": "934a59b1-7061-4834-8b8e-7a37ebecf43d",
      "name": "Note Adhésive",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -640,
        -384
      ],
      "parameters": {
        "color": 6,
        "width": 944,
        "height": 480,
        "content": "## SERP AI Agent\n\nPerforms the SERP search via Thordata SERP API\n"
      },
      "typeVersion": 1
    },
    {
      "id": "3941d4f9-83e0-4bcb-87a4-311b1fe9a077",
      "name": "Note Adhésive 2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        336,
        -592
      ],
      "parameters": {
        "color": 5,
        "width": 512,
        "height": 896,
        "content": "## Data Enrichment\n\nPerform Comprehensive and Abstract Summaries. Also performs the Keyword and Topic analysis of the Agent Output content."
      },
      "typeVersion": 1
    },
    {
      "id": "f9919d39-0cd5-489f-ad16-4baff0a648ae",
      "name": "Note Adhésive 3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        336,
        -1072
      ],
      "parameters": {
        "color": 4,
        "width": 512,
        "height": 448,
        "content": "## SEO Analyst\nAnalysis the following SERP results for competitor insights and keyword opportunities\n"
      },
      "typeVersion": 1
    },
    {
      "id": "a3060af6-1f26-42ab-a69e-4be7a7dc4e01",
      "name": "Ajouter ou mettre à jour une ligne dans la feuille",
      "type": "n8n-nodes-base.googleSheets",
      "position": [
        1152,
        -368
      ],
      "parameters": {
        "columns": {
          "value": {},
          "schema": [],
          "mappingMode": "autoMapInputData",
          "matchingColumns": [
            "seo"
          ],
          "attemptToConvertTypes": false,
          "convertFieldsToString": false
        },
        "options": {},
        "operation": "appendOrUpdate",
        "sheetName": {
          "__rl": true,
          "mode": "list",
          "value": "gid=0",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/151xx1ClNDoQ2g_SANQJmdN4EJroWWEsPM658dFWLMTQ/edit#gid=0",
          "cachedResultName": "Sheet1"
        },
        "documentId": {
          "__rl": true,
          "mode": "list",
          "value": "151xx1ClNDoQ2g_SANQJmdN4EJroWWEsPM658dFWLMTQ",
          "cachedResultUrl": "https://docs.google.com/spreadsheets/d/151xx1ClNDoQ2g_SANQJmdN4EJroWWEsPM658dFWLMTQ/edit?usp=drivesdk",
          "cachedResultName": "Competitor Intelligence Agent"
        }
      },
      "credentials": {
        "googleSheetsOAuth2Api": {
          "id": "Zjoxh2BUZ6VXGQhA",
          "name": "Google Sheets account"
        }
      },
      "typeVersion": 4.7
    },
    {
      "id": "d058cb5c-ee3a-4b50-be25-8562a1be4e68",
      "name": "Fusionner",
      "type": "n8n-nodes-base.merge",
      "position": [
        944,
        -384
      ],
      "parameters": {
        "numberInputs": 3
      },
      "typeVersion": 3.2
    },
    {
      "id": "b0286661-257a-43e7-ae77-3ddba37af384",
      "name": "Note Adhésive 4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        896,
        -560
      ],
      "parameters": {
        "color": 3,
        "width": 480,
        "height": 496,
        "content": "## Export Data Handling\n\nExports the output to the Google Spreedsheet"
      },
      "typeVersion": 1
    },
    {
      "id": "32d8e326-65b6-4705-9a01-a8d6c35755c6",
      "name": "Note Adhésive 5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1088,
        -944
      ],
      "parameters": {
        "color": 7,
        "width": 992,
        "height": 528,
        "content": "## **Purpose:**\n  Automate SERP analysis to extract competitor insights, keyword gaps, and SEO opportunities using Thordata for search data and OpenAI for structured analysis.\n\n* **Workflow Steps:**\n\n  1. **Trigger (Schedule or Manual):** Starts the weekly SERP analysis.\n  2. **AI Agent:** Performs the SERP search and retrieves top-ranking results.\n  3. **OpenAI Node:** Analyzes SERP data with GPT and outputs results in the defined JSON schema.\n  4. **Google Sheets Node:** Sends summarized insights or logs data for historical tracking.\n\n* **Key Outputs:**\n\n  * Competitor domains, ranking positions, and SEO strengths/weaknesses.\n  * Keyword opportunities with search volume, difficulty, and intent.\n  * Topic clusters and content gap recommendations.\n  * Overall SEO Strength Score (0–100).\n  * AI-generated summary for quick reporting.\n\n* **Use Case:**\n  Ideal for SEO teams, marketers, and agencies to monitor competitors, discover new keyword opportunities, and optimize content strategies weekly.\n\n"
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "a4d805de-2a7e-466a-bdce-26a1bc60e212",
  "connections": {
    "d058cb5c-ee3a-4b50-be25-8562a1be4e68": {
      "main": [
        [
          {
            "node": "a3060af6-1f26-42ab-a69e-4be7a7dc4e01",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "d370dfd6-2a22-4e90-816f-be5e3b84c4c4": {
      "main": [
        [
          {
            "node": "8234accd-fa05-4795-96ef-99a158e673ff",
            "type": "main",
            "index": 0
          },
          {
            "node": "2438f8b8-02cf-4811-a65f-7c4601f252bc",
            "type": "main",
            "index": 0
          },
          {
            "node": "27bcba40-fa09-4561-8a79-67af2e479e16",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "51f08152-e6e0-428a-b914-77cf14e13283": {
      "ai_tool": [
        [
          {
            "node": "d370dfd6-2a22-4e90-816f-be5e3b84c4c4",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "27bcba40-fa09-4561-8a79-67af2e479e16": {
      "main": [
        [
          {
            "node": "d058cb5c-ee3a-4b50-be25-8562a1be4e68",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "ecdb2eb4-373b-4929-b3b6-14b9063d1e91": {
      "ai_tool": [
        [
          {
            "node": "d370dfd6-2a22-4e90-816f-be5e3b84c4c4",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "ddfeffd8-9c9a-42c4-be8d-36f2dbacb99c": {
      "ai_tool": [
        [
          {
            "node": "d370dfd6-2a22-4e90-816f-be5e3b84c4c4",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "8fdd3ba1-7f2f-4cb5-8be7-810be5048240": {
      "ai_tool": [
        [
          {
            "node": "d370dfd6-2a22-4e90-816f-be5e3b84c4c4",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "7af03b55-ba2e-4408-80ff-b81c02286993": {
      "ai_languageModel": [
        [
          {
            "node": "d370dfd6-2a22-4e90-816f-be5e3b84c4c4",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "6a142d04-f88e-436c-8a20-4f575de756b8": {
      "main": [
        [
          {
            "node": "d370dfd6-2a22-4e90-816f-be5e3b84c4c4",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "8234accd-fa05-4795-96ef-99a158e673ff": {
      "main": [
        [
          {
            "node": "d058cb5c-ee3a-4b50-be25-8562a1be4e68",
            "type": "main",
            "index": 1
          }
        ]
      ]
    },
    "ccae56d4-2d58-4b87-bc57-e24857716860": {
      "ai_outputParser": [
        [
          {
            "node": "8234accd-fa05-4795-96ef-99a158e673ff",
            "type": "ai_outputParser",
            "index": 0
          }
        ]
      ]
    },
    "2438f8b8-02cf-4811-a65f-7c4601f252bc": {
      "main": [
        [
          {
            "node": "d058cb5c-ee3a-4b50-be25-8562a1be4e68",
            "type": "main",
            "index": 2
          }
        ]
      ]
    },
    "b5cac579-1031-488c-9caa-75af3c14250e": {
      "ai_languageModel": [
        [
          {
            "node": "27bcba40-fa09-4561-8a79-67af2e479e16",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "fe9c7ae5-70e8-4854-8c4d-f2dee9956024": {
      "ai_languageModel": [
        [
          {
            "node": "8234accd-fa05-4795-96ef-99a158e673ff",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "884c52b5-d8a2-4c67-b2a4-ca4ccacb7677": {
      "main": [
        [
          {
            "node": "6a142d04-f88e-436c-8a20-4f575de756b8",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "c4b13e07-1fa9-4d33-9140-14375f1e5c6b": {
      "ai_languageModel": [
        [
          {
            "node": "2438f8b8-02cf-4811-a65f-7c4601f252bc",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    }
  }
}
Foire aux questions

Comment utiliser ce workflow ?

Copiez le code de configuration JSON ci-dessus, créez un nouveau workflow dans votre instance n8n et sélectionnez "Importer depuis le JSON", collez la configuration et modifiez les paramètres d'authentification selon vos besoins.

Dans quelles scénarios ce workflow est-il adapté ?

Avancé - Étude de marché, Résumé IA

Est-ce payant ?

Ce workflow est entièrement gratuit et peut être utilisé directement. Veuillez noter que les services tiers utilisés dans le workflow (comme l'API OpenAI) peuvent nécessiter un paiement de votre part.

Workflows recommandés

Vérification de la visibilité de la marque - Démo de projet de laboratoire d'IA
Analyse de la visibilité de la marque et du sentiment sur les outils de recherche d'IA (OpenAI, Perplexity, ChatGPT)
If
Set
Limit
+
If
Set
Limit
48 NœudsAOE Agent Lab
Étude de marché
Extraction des workflows récemment ajoutés de la communauté n8n via ScrapeGraph AI
Extraire et stocker les workflows récemment ajoutés de la communauté n8n avec ScrapeGraphAI et Gemini
Set
Merge
Split Out
+
Set
Merge
Split Out
21 NœudsDavide
Divers
Intelligence et fouille de données sur les talents LinkedIn avec Decodo et GPT-4o-mini
Extraire et analyser des renseignements sur les talents et des données de fouille avec LinkedIn, Decodo et GPT-4o-mini
Set
Code
Merge
+
Set
Code
Merge
19 NœudsRanjan Dailata
Ressources Humaines
Extraction, résumé et analyse des baisses de prix des produits Amazon avec Bright Data
utilisationBright DataetGoogle Geminiextraction、总结etanalyse亚马逊降价信息
Set
Wait
Merge
+
Set
Wait
Merge
26 NœudsRanjan Dailata
Intelligence Artificielle
01 Analyser la performance des publicités Facebook avec un acheteur d'espace médias IA et envoyer les informations dans Google Sheets
Analyser les publicités Facebook et envoyer les insights dans Google Sheets avec Gemini AI
If
Set
Code
+
If
Set
Code
34 NœudsJJ Tham
Étude de marché
Surveillance des événements locaux
Surveillance automatique d'événements locaux avec Bright Data MCP et OpenAI Analysis
Set
Code
Google Sheets
+
Set
Code
Google Sheets
18 NœudsYaron Been
Étude de marché
Informations sur le workflow
Niveau de difficulté
Avancé
Nombre de nœuds23
Catégorie2
Types de nœuds11
Description de la difficulté

Adapté aux utilisateurs avancés, avec des workflows complexes contenant 16+ nœuds

Auteur
Ranjan Dailata

Ranjan Dailata

@ranjancse

A Professional based out of India specialized in handling AI-powered automations. Contact me at ranjancse@gmail.com

Liens externes
Voir sur n8n.io

Partager ce workflow

Catégories

Catégories: 34