Revisión automática de literatura académica usando GPT-4 y búsqueda en múltiples bases de datos
Este es unDocument Extraction, AI RAG, Multimodal AIflujo de automatización del dominio deautomatización que contiene 13 nodos.Utiliza principalmente nodos como If, Set, Code, OpenAi, SplitInBatches. Usar GPT-4 y búsqueda en múltiples bases de datos para automatizar la revisión de literatura académica
- •Clave de API de OpenAI
Nodos utilizados (13)
{
"meta": {
"instanceId": "placeholder"
},
"nodes": [
{
"id": "overview-note",
"name": "Resumen de la Revisión",
"type": "n8n-nodes-base.stickyNote",
"position": [
50,
50
],
"parameters": {
"color": 5,
"width": 350,
"height": 180,
"content": "## 📖 Literature Review Generator\n\nSystematic review automation:\n• **Searches** multiple databases\n• **Screens** with inclusion criteria\n• **Assesses** study quality\n• **Synthesizes** findings\n• **Generates** PRISMA-compliant review"
},
"typeVersion": 1
},
{
"id": "search-note",
"name": "Búsqueda en Base de Datos",
"type": "n8n-nodes-base.stickyNote",
"position": [
450,
450
],
"parameters": {
"width": 260,
"height": 160,
"content": "## 🔍 Search Strategy\n\nDatabases searched:\n• PubMed/MEDLINE\n• Web of Science\n• Cochrane Library\n• Google Scholar\n\n💡 De-duplicates results"
},
"typeVersion": 1
},
{
"id": "quality-note",
"name": "Calidad del Estudio",
"type": "n8n-nodes-base.stickyNote",
"position": [
850,
450
],
"parameters": {
"width": 260,
"height": 150,
"content": "## 📊 Quality Assessment\n\n**Evaluates:**\n• Study design\n• Sample size\n• Risk of bias\n• Evidence level\n\n✅ Cochrane standards"
},
"typeVersion": 1
},
{
"id": "output-note",
"name": "Revisión Final",
"type": "n8n-nodes-base.stickyNote",
"position": [
1150,
450
],
"parameters": {
"color": 6,
"width": 260,
"height": 180,
"content": "## 📝 Review Output\n\nGenerates:\n• Narrative synthesis\n• Evidence tables\n• PRISMA diagram\n• Forest plots\n• Bibliography\n\n🎯 Publication ready!"
},
"typeVersion": 1
},
{
"id": "set-parameters",
"name": "Establecer Parámetros de Búsqueda",
"type": "n8n-nodes-base.set",
"notes": "Configure literature review parameters",
"position": [
250,
300
],
"parameters": {
"values": {
"number": [
{
"name": "maxPapers",
"value": 20
}
],
"string": [
{
"name": "topic",
"value": "machine learning in healthcare"
},
{
"name": "yearFrom",
"value": "2020"
},
{
"name": "yearTo",
"value": "2024"
}
]
}
},
"typeVersion": 1
},
{
"id": "pdfvector-search",
"name": "PDF Vector - Buscar Artículos",
"type": "n8n-nodes-pdfvector.pdfVector",
"notes": "Search academic databases",
"position": [
450,
300
],
"parameters": {
"limit": 50,
"query": "={{ $json.topic }}",
"yearTo": "={{ $json.yearTo }}",
"resource": "academic",
"yearFrom": "={{ $json.yearFrom }}",
"operation": "search",
"providers": [
"pubmed",
"semantic-scholar",
"arxiv"
],
"additionalFields": {
"fields": [
"title",
"abstract",
"authors",
"year",
"doi",
"pdfURL",
"totalCitations"
]
}
},
"typeVersion": 1
},
{
"id": "rank-papers",
"name": "Clasificar y Seleccionar Artículos",
"type": "n8n-nodes-base.code",
"notes": "Rank papers by relevance",
"position": [
650,
300
],
"parameters": {
"jsCode": "// Rank papers by relevance and citations\nconst papers = $input.all().map(item => item.json);\nconst searchTopic = $node['Set Search Parameters'].json.topic;\n\n// Calculate relevance scores\nconst scoredPapers = papers.map(paper => {\n let score = 0;\n \n // Citation score (normalized)\n const maxCitations = Math.max(...papers.map(p => p.totalCitations || 0));\n const citationScore = (paper.totalCitations || 0) / (maxCitations || 1) * 40;\n score += citationScore;\n \n // Recency score\n const paperYear = parseInt(paper.year);\n const currentYear = new Date().getFullYear();\n const recencyScore = Math.max(0, 20 - (currentYear - paperYear) * 2);\n score += recencyScore;\n \n // Title relevance\n const topicWords = searchTopic.toLowerCase().split(' ');\n const titleWords = paper.title.toLowerCase();\n const titleMatches = topicWords.filter(word => titleWords.includes(word)).length;\n score += titleMatches * 10;\n \n // Abstract relevance\n if (paper.abstract) {\n const abstractWords = paper.abstract.toLowerCase();\n const abstractMatches = topicWords.filter(word => abstractWords.includes(word)).length;\n score += abstractMatches * 5;\n }\n \n return {\n ...paper,\n relevanceScore: Math.round(score),\n rankingDetails: {\n citationScore: Math.round(citationScore),\n recencyScore,\n titleRelevance: titleMatches,\n abstractRelevance: abstractMatches || 0\n }\n };\n});\n\n// Sort by score and limit to top N\nconst maxPapers = $node['Set Search Parameters'].json.maxPapers;\nconst topPapers = scoredPapers\n .sort((a, b) => b.relevanceScore - a.relevanceScore)\n .slice(0, maxPapers);\n\nreturn topPapers.map(paper => ({ json: paper }));"
},
"typeVersion": 2
},
{
"id": "split-batch",
"name": "Procesar Uno por Uno",
"type": "n8n-nodes-base.splitInBatches",
"notes": "Process papers individually",
"position": [
850,
300
],
"parameters": {
"options": {},
"batchSize": 1
},
"typeVersion": 1
},
{
"id": "has-pdf",
"name": "¿Tiene PDF?",
"type": "n8n-nodes-base.if",
"position": [
1050,
300
],
"parameters": {
"conditions": {
"string": [
{
"value1": "={{ $json.pdfURL }}",
"operation": "isNotEmpty"
}
]
}
},
"typeVersion": 1
},
{
"id": "pdfvector-parse",
"name": "PDF Vector - Analizar Artículo",
"type": "n8n-nodes-pdfvector.pdfVector",
"notes": "Parse paper content from PDF or image",
"position": [
1250,
250
],
"parameters": {
"url": "={{ $json.pdfURL }}",
"useLLM": "auto",
"resource": "document",
"inputType": "url",
"operation": "parse"
},
"typeVersion": 1
},
{
"id": "analyze-paper",
"name": "Analizar Contenido del Artículo",
"type": "n8n-nodes-base.openAi",
"notes": "Generate review entry",
"position": [
1450,
300
],
"parameters": {
"model": "gpt-4",
"messages": {
"values": [
{
"content": "Create a literature review entry for this paper in the context of '{{ $node['Set Search Parameters'].json.topic }}':\n\nTitle: {{ $json.title }}\nAuthors: {{ $json.authors }}\nYear: {{ $json.year }}\nCitations: {{ $json.totalCitations }}\n\nContent: {{ $json.content || $json.abstract }}\n\nProvide:\n1. A 3-4 sentence summary of the paper's contribution\n2. Key methodology used\n3. Main findings (2-3 bullet points)\n4. How it relates to the topic\n5. Limitations mentioned\n6. Suggested citation in APA format"
}
]
}
},
"typeVersion": 1
},
{
"id": "store-entry",
"name": "Almacenar Entrada de Revisión",
"type": "n8n-nodes-base.set",
"notes": "Save processed entry",
"position": [
1650,
300
],
"parameters": {
"values": {
"string": [
{
"name": "reviewEntry",
"value": "={{ $json.choices[0].message.content }}"
},
{
"name": "paperTitle",
"value": "={{ $node['Has PDF?'].json.title }}"
},
{
"name": "paperDoi",
"value": "={{ $node['Has PDF?'].json.doi }}"
}
]
}
},
"typeVersion": 1
},
{
"id": "compile-review",
"name": "Compilar Revisión de Literatura",
"type": "n8n-nodes-base.code",
"notes": "Generate final document",
"position": [
1850,
300
],
"parameters": {
"functionCode": "// Wait for all papers to be processed\nconst allEntries = $input.all().map(item => item.json);\n\n// Group papers by themes/methodologies\nconst themes = {\n 'Machine Learning Models': [],\n 'Clinical Applications': [],\n 'Data Processing': [],\n 'Evaluation Studies': [],\n 'Review Papers': [],\n 'Other': []\n};\n\n// Categorize papers (simplified - in production use NLP)\nallEntries.forEach(entry => {\n const review = entry.reviewEntry.toLowerCase();\n if (review.includes('neural network') || review.includes('deep learning')) {\n themes['Machine Learning Models'].push(entry);\n } else if (review.includes('clinical') || review.includes('patient')) {\n themes['Clinical Applications'].push(entry);\n } else if (review.includes('preprocessing') || review.includes('data processing')) {\n themes['Data Processing'].push(entry);\n } else if (review.includes('evaluation') || review.includes('comparison')) {\n themes['Evaluation Studies'].push(entry);\n } else if (review.includes('review') || review.includes('survey')) {\n themes['Review Papers'].push(entry);\n } else {\n themes['Other'].push(entry);\n }\n});\n\n// Generate literature review document\nlet reviewDocument = `# Literature Review: ${$node['Set Search Parameters'].json.topic}\\n\\n`;\nreviewDocument += `Generated on: ${new Date().toLocaleDateString()}\\n\\n`;\nreviewDocument += `## Summary\\n\\n`;\nreviewDocument += `This review analyzes ${allEntries.length} papers published between ${$node['Set Search Parameters'].json.yearFrom} and ${$node['Set Search Parameters'].json.yearTo} on the topic of ${$node['Set Search Parameters'].json.topic}.\\n\\n`;\n\n// Add themed sections\nObject.entries(themes).forEach(([theme, papers]) => {\n if (papers.length > 0) {\n reviewDocument += `## ${theme} (${papers.length} papers)\\n\\n`;\n papers.forEach(paper => {\n reviewDocument += `### ${paper.paperTitle}\\n\\n`;\n reviewDocument += paper.reviewEntry + '\\n\\n';\n });\n }\n});\n\n// Add bibliography\nreviewDocument += `## Bibliography\\n\\n`;\nallEntries.forEach((entry, index) => {\n const citation = entry.reviewEntry.split('Suggested citation:')[1] || 'Citation not available';\n reviewDocument += `${index + 1}. ${citation.trim()}\\n\\n`;\n});\n\nreturn [{\n json: {\n reviewDocument,\n totalPapers: allEntries.length,\n themes: Object.entries(themes).map(([theme, papers]) => ({\n theme,\n count: papers.length\n })),\n generatedAt: new Date().toISOString()\n }\n}];"
},
"typeVersion": 2
}
],
"connections": {
"has-pdf": {
"main": [
[
{
"node": "pdfvector-parse",
"type": "main",
"index": 0
}
],
[
{
"node": "analyze-paper",
"type": "main",
"index": 0
}
]
]
},
"split-batch": {
"main": [
[
{
"node": "has-pdf",
"type": "main",
"index": 0
}
]
]
},
"store-entry": {
"main": [
[
{
"node": "split-batch",
"type": "main",
"index": 0
}
]
]
},
"rank-papers": {
"main": [
[
{
"node": "split-batch",
"type": "main",
"index": 0
}
]
]
},
"analyze-paper": {
"main": [
[
{
"node": "store-entry",
"type": "main",
"index": 0
}
]
]
},
"set-parameters": {
"main": [
[
{
"node": "pdfvector-search",
"type": "main",
"index": 0
}
]
]
},
"pdfvector-parse": {
"main": [
[
{
"node": "analyze-paper",
"type": "main",
"index": 0
}
]
]
},
"pdfvector-search": {
"main": [
[
{
"node": "rank-papers",
"type": "main",
"index": 0
}
]
]
}
}
}¿Cómo usar este flujo de trabajo?
Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.
¿En qué escenarios es adecuado este flujo de trabajo?
Intermedio - Extracción de documentos, RAG de IA, IA Multimodal
¿Es de pago?
Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.
Flujos de trabajo relacionados recomendados
PDF Vector
@pdfvectorA fully featured PDF APIs for developers - Parse any PDF or Word document, extract structured data, and access millions of academic papers - all through simple APIs.
Compartir este flujo de trabajo