Extraer recomendaciones de marketing a partir de comentarios con Gemini AI y Google Sheets
Este es unAI, Marketingflujo de automatización del dominio deautomatización que contiene 7 nodos.Utiliza principalmente nodos como Gmail, GoogleSheets, ChainLlm, GoogleSheetsTrigger, LmChatGoogleGemini, combinando tecnología de inteligencia artificial para lograr automatización inteligente. Extraer recomendaciones de marketing de comentarios usando Gemini AI y Google Sheets
- •Cuenta de Google y credenciales de API de Gmail
- •Credenciales de API de Google Sheets
- •Clave de API de Google Gemini
Nodos utilizados (7)
Categoría
{
"meta": {
"instanceId": "5aaf4236c70e34e423fbdb2c7b754d19253a933bb1476d548f75848a01e473cf",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "afcb0c52-765f-48be-a523-ede984a607eb",
"name": "Nota adhesiva - Asistencia",
"type": "n8n-nodes-base.stickyNote",
"position": [
-740,
740
],
"parameters": {
"color": 4,
"width": 560,
"height": 900,
"content": "=======================================\n WORKFLOW ASSISTANCE\n=======================================\nFor any questions or support, please contact:\n Yaron@nofluff.online\n\nExplore more tips and tutorials here:\n - YouTube: https://www.youtube.com/@YaronBeen/videos\n - LinkedIn: https://www.linkedin.com/in/yaronbeen/\n=======================================\n\nAuthor:\nYaron Been\n"
},
"typeVersion": 1
},
{
"id": "648b0ae3-13aa-429b-b516-de12dfe8a96b",
"name": "Nota adhesiva - Descripción",
"type": "n8n-nodes-base.stickyNote",
"position": [
-140,
920
],
"parameters": {
"width": 480,
"height": 500,
"content": "Workflow Name: Testimonial Extractor\n\nDescription:\nThis workflow listens for new rows added to a Google Sheet form response, extracts a short emotional testimonial using a language model, writes it back to the sheet, and sends an email notification with the extracted quote."
},
"typeVersion": 1
},
{
"id": "cef904bc-df66-4ac8-b013-5d5bb0f6993c",
"name": "Google Sheets Trigger",
"type": "n8n-nodes-base.googleSheetsTrigger",
"position": [
160,
1120
],
"parameters": {
"event": "rowAdded",
"options": {},
"pollTimes": {
"item": [
{
"mode": "everyMinute"
}
]
},
"sheetName": {
"__rl": true,
"mode": "list",
"value": 352165437,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/14nmSXdGURNj3a1uQsxNcspdN5HrjGl8TA8t-hdQUF2s/edit#gid=352165437",
"cachedResultName": "Form Responses 1"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "14nmSXdGURNj3a1uQsxNcspdN5HrjGl8TA8t-hdQUF2s",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/14nmSXdGURNj3a1uQsxNcspdN5HrjGl8TA8t-hdQUF2s/edit?usp=drivesdk",
"cachedResultName": "Testimonial"
}
},
"typeVersion": 1
},
{
"id": "dc335413-fce4-46c7-996d-c5f014a0abbc",
"name": "Cadena básica de LLM",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
480,
960
],
"parameters": {
"text": "=Extract a short, emotionally engaging testimonial quote from the following user feedback. Ignore neutral or irrelevant text. Only return the quote.\n\"{{ $json.Feedback }}\"\n\nFeedback: \"{{ $json[\"Feedback\"] }}\"\n",
"promptType": "define"
},
"typeVersion": 1.5
},
{
"id": "63b58b70-0ab0-4395-8aff-517769159578",
"name": "Google Gemini Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
980,
1360
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash"
},
"typeVersion": 1
},
{
"id": "ba7da0dc-1bcf-4214-8c7b-8d94361981c2",
"name": "Google Sheets",
"type": "n8n-nodes-base.googleSheets",
"position": [
1140,
1120
],
"parameters": {
"columns": {
"value": {},
"schema": [
{
"id": "Timestamp",
"type": "string",
"display": true,
"required": false,
"displayName": "Timestamp",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Name",
"type": "string",
"display": true,
"required": false,
"displayName": "Name",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Email",
"type": "string",
"display": true,
"required": false,
"displayName": "Email",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Feedback",
"type": "string",
"display": true,
"required": false,
"displayName": "Feedback",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "Testimony",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "Testimony",
"defaultMatch": false,
"canBeUsedToMatch": true
},
{
"id": "text",
"type": "string",
"display": true,
"removed": false,
"required": false,
"displayName": "text",
"defaultMatch": false,
"canBeUsedToMatch": true
}
],
"mappingMode": "autoMapInputData",
"matchingColumns": [
"Testimony"
],
"attemptToConvertTypes": false,
"convertFieldsToString": false
},
"options": {},
"operation": "appendOrUpdate",
"sheetName": {
"__rl": true,
"mode": "list",
"value": 352165437,
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/14nmSXdGURNj3a1uQsxNcspdN5HrjGl8TA8t-hdQUF2s/edit#gid=352165437",
"cachedResultName": "Form Responses 1"
},
"documentId": {
"__rl": true,
"mode": "list",
"value": "14nmSXdGURNj3a1uQsxNcspdN5HrjGl8TA8t-hdQUF2s",
"cachedResultUrl": "https://docs.google.com/spreadsheets/d/14nmSXdGURNj3a1uQsxNcspdN5HrjGl8TA8t-hdQUF2s/edit?usp=drivesdk",
"cachedResultName": "Testimonial"
}
},
"typeVersion": 4.5
},
{
"id": "a9a74795-0688-4514-85fe-3146a30bb9c1",
"name": "Gmail",
"type": "n8n-nodes-base.gmail",
"position": [
1380,
1020
],
"webhookId": "acce1be8-39ab-4f30-8549-9e06614abbf3",
"parameters": {
"sendTo": "nataylamesa@gmail.com",
"message": "={{ $json.text }}",
"options": {},
"subject": "New Testimonial Extracted"
},
"typeVersion": 2.1
}
],
"pinData": {},
"connections": {
"ba7da0dc-1bcf-4214-8c7b-8d94361981c2": {
"main": [
[
{
"node": "a9a74795-0688-4514-85fe-3146a30bb9c1",
"type": "main",
"index": 0
}
]
]
},
"dc335413-fce4-46c7-996d-c5f014a0abbc": {
"main": [
[
{
"node": "ba7da0dc-1bcf-4214-8c7b-8d94361981c2",
"type": "main",
"index": 0
}
]
]
},
"cef904bc-df66-4ac8-b013-5d5bb0f6993c": {
"main": [
[
{
"node": "dc335413-fce4-46c7-996d-c5f014a0abbc",
"type": "main",
"index": 0
}
]
]
},
"63b58b70-0ab0-4395-8aff-517769159578": {
"ai_languageModel": [
[
{
"node": "dc335413-fce4-46c7-996d-c5f014a0abbc",
"type": "ai_languageModel",
"index": 0
}
]
]
}
}
}¿Cómo usar este flujo de trabajo?
Copie el código de configuración JSON de arriba, cree un nuevo flujo de trabajo en su instancia de n8n y seleccione "Importar desde JSON", pegue la configuración y luego modifique la configuración de credenciales según sea necesario.
¿En qué escenarios es adecuado este flujo de trabajo?
Intermedio - Inteligencia Artificial, Marketing
¿Es de pago?
Este flujo de trabajo es completamente gratuito, puede importarlo y usarlo directamente. Sin embargo, tenga en cuenta que los servicios de terceros utilizados en el flujo de trabajo (como la API de OpenAI) pueden requerir un pago por su cuenta.
Flujos de trabajo relacionados recomendados
Yaron Been
@yaron-nofluffBuilding AI Agents and Automations | Growth Marketer | Entrepreneur | Book Author & Podcast Host
Compartir este flujo de trabajo